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Virtual Staining of Colon Cancer Tissue by Label-free Raman 
Micro-spectroscopy 
D. Petersen,a† L. Mavarani,a,c† D. Niedieker,a E. Freier,a,d A. Tannapfel,b C. Kötting,a K. Gerwerta*, 
and S. F. El-Mashtolya 

The great capability of label-free classification of tissue via vibrational spectroscopy, like Raman or infrared imaging, is 
shown in numerous publications (review: Diem et al. J. Biophotonics 2013, 6, 855-886). Here, we present a new approach, 
virtual staining, that improves the Raman spectral histopathology (SHP) images of colorectal cancer tissue by combining 
the integrated Raman intensity image in the C—H stretching region (2800-3050 cm-1) with the pseudo-colour Raman 
image. This allows the display of fine structures such as the filamentous composition of muscle tissue. The morphology of 
the virtually stained images is in agreement with  the gold standard in medical diagnosis, the haematoxylin-eosin staining. 
The virtual stainig image also represents the whole biochemical fingerprint, and several tissue components including 
carcinoma were identified automatically with high sensitivity and specificity. For fast tissue classifications, a similar 
approach was applied on coherent anti-Stokes Raman scattering (CARS) spectral data which is faster and therefore 
potentially more suitable for clinical applications. 

Introduction  
Colorectal cancer is among the most common cancer diseases 
diagnosed for humans.1 More than 1 million individuals 
worldwide develop colorectal cancer each year.2 Most colon 
cancers start as small benign polyps based on an adenoma 
sequence. The first level of detecting of colorectal carcinoma is 
usually performed through a visual inspection during 
colonoscopy. The diagnosis is performed manually by 
pathologists on a biopsy via histopathological examination 
using haematoxylin and eosin (H&E) stained thin tissue 
sections. In order to determine gene defects next generation 
gene sequencing is performed.3 For information about the 
presence of certain cancer associated markers or proteins, 
immunohistochemical staining (IHC) is the method of choice. If 
colorectal cancer is diagnosed within a patient, cancer regions 
and their surrounding areas of the colon are resected 
generously. 

In the last decade, several studies have shown that spectral 
histopathology (SHP) is capable of classifying different tissue 
types and especially diseased tissue such as cancer.4–11 The 
measured vibrational spectra are integral signals of the 
proteome, genome, and metabolome. Thus, when vibrational 
spectra are collected from distinct regions of for example 
tissue sections, variations in the spectral patterns are detected 
and can be correlated with the tissue types or carcinoma from 
which the spectra were collected. For instance, colorectal and 
lung carcinoma were identified in this regard by infrared (IR) 
imaging.12–16 
Several groups showed the application of Raman and coherent 
anti-Stokes Raman scattering (CARS) imaging on colon 
tissue.17–22 In all cases normal and carcinoma tissue were 
successfully distinguished, but most of these studies lack 
elaborated automated bioinformatics. We have recently 
established a workflow that includes Raman microscopy, 
bioinformatics, histopathology, and IHC (Fig. S1 in 
Supplementary Information (SI)) to automatically classify 
different tissue types and cancer regions.23 The workflow is 
divided into training and validation stages. In the training 
stage, Raman spectral imaging of thin sections of colon tissue 
was performed. Hierarchical cluster analysis (HCA) of the 
Raman spectroscopic data was performed as an unsupervised 
segmentation. From this segmentation similar spectra were 
grouped into clusters producing a pseudo-colour image. The 
H&E and/or IHC staining were performed on adjacent thin 
tissue section. Images of these staining were annotated by the 
pathologist and then used to identify the corresponding 
Raman spectral “fingerprints” of different tissue types 
including cancer based on the comparison with pseudo-colour 
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images. These spectral “fingerprints” were used as a database 
to perform a supervised classification through a classifier such 
as random forest (RF).24 RF classifiers are accurate and robust 
against over-fitting. In the validation stage, Raman spectral 
maps of new thin tissue sections were measured and 
automatically annotated by the trained RF. By using this 
workflow, our preliminary results of Raman based RF with 532 
nm excitation displayed carcinoma regions and cells such as 
lymphocytes and erythrocytes in addition to an 
autofluorescence specific to p53 active areas in the crypt 
region of the lamina propria mucosae.23  
This means that Raman SHP can resolve small structures like 
erythrocytes and lymphocytes and visualizes detailed chemical 
and morphological composition due to the higher spatial 
resolution of Raman imaging in comparison with IR imaging. 
This advantage allows us to detect borders and transitions 
between diseased and healthy tissue in an accurate way, 
which is of importance in clinical diagnosis.25 Thereby, not only 
the carcinoma can be resected precisely, but also healthy 
tissue around the carcinoma is spared, which can be crucial in 
some organs, for example brain.26  
Here, we present a new method for the graphical 
representation, virtual staining, that adds the morphological 
information given by the Raman intensity to the RF pseudo-
colour images. These label-free images with high spatial 
resolution enable a direct comparison with H&E stained 
images, and thus can help the pathologists in their diagnosis, 
especially for questionable areas. Several tissue classes and 
carcinoma regions of colorectal carcinoma were identified and 
represented by highly resolved RF images. Furthermore, we 
extend our method to a fast tissue classification using CARS 
imaging of colorectal cancer tissues coupled with second 
harmonic generation (SHG), which is a perfect combination 
suitable for clinical applications. 

EXPERIMENTAL SECTION 
Sample preparation 
Collected spontaneous Raman data sets were gathered from 
formalin-fixed, paraffin-embedded and native tissue sections. 
They were obtained from the Institute of Pathology of the 
Bergmann’s Heil Hospital in Bochum, Ruhr-University Bochum. 
The research was approved by institutional review board (IRB) 
of the Faculty of Medicine, Ruhr-University Bochum, and 
complies with all applicable laws and institutional guidelines, 
and the institutional committee have approved the 
experiments. An informed consent was also obtained from the 
patients for use of their tissue samples. 
The tissue sections were mounted on reflective silver coated 
microscope slides (low-emissivity slides [Kevley Technologies, 
Chesterland, OH]) and deparaffinised before measurements. 
By using formalin-fixed, deparaffinised samples, which were 
stable over a long period of time, we were able to use the 
tissue slides for long term measurements and perform several 
Raman measurements on the same tissue slides. Subsequent 
H&E staining was performed on the measured tissue sections 
or adjacent thin tissue section. For CARS measurements, tissue 

resections were first frozen in liquid nitrogen and cut with a 
cryotome. Afterwards, the tissue sections were mounted on 
glass slides (Menzel Glas, Braunschweig, Germany). These 
slides were first dried under dry air before and during CARS 
measurements, which were acquired on very short term. The 
subsequent H&E staining was conducted on the same tissue 
slide. 
Data Acquisition 
Raman hyperspectral data sets were acquired using a confocal 
Raman microscope (Alpha300AR, WITec Inc., Ulm, Germany) 
coupled to a frequency doubled solid state laser operating at 
532 nm (WITec, Nd:YAG, max. 42 mW). A 25 µm diameter 
single-mode optical fiber was used to couple the laser 
radiation into the microscope. For all measurements 7s 
exposure time per pixel was used, utilizing a 100X/NA 0.90 
objective (Olympus, Japan). The Raman scattered light was 
collected with the same objective and directed through a 
multi-mode optical fiber (50 µm diameter) to a spectrometer 
equipped with a back-illuminated electron-multiplying charge 
coupled device (EMCCD) camera  (1600 x 200 pixels). Raman 
data sets were obtained with a pixel size of 0.8-1.0 µm for 
regions between 80-150 µm x 80-150 µm. The laser intensity 
was fixed to 1.5 mW at the sample position.  
CARS imaging of tissue samples was performed on a 
commercial setup (TCS SP5 II CARS, Leica Microsystems, 
Heidelberg, Germany) as described previously.27 Briefly, two 
picosecond-pulsed laser beams were collinearly aligned and 
focused on the sample through a HCX IRAPO L (25x/0.95W, 
Leica Microsystems) objective. Multispectral CARS and SHG 
datasets were acquired in a region between 2700 cm-1 and 
3000 cm-1. The datasets consist of 61 spectral images and the 
acquisition time for the whole dataset was ~2 ms per pixel, 
which is much faster than spontaneous Raman imaging by 
more than 100 times. Areas of roughly 300 µm x 300 µm (1024 
x 1024 pixels) were scanned in epi (backward) and forward 
direction.  
Data Analysis 
The Raman raw data was processed in Matlab with the Image 
Processing and Statistics toolboxes (The Mathworks, Inc., 
Mass., USA) and algorithms developed in-house. Cosmic spikes 
were removed by an impulse noise filter28 and the spectra 
were interpolated to a reference wavenumber scale. 
Hierarchical cluster analysis29 (HCA) was performed on vector 
normalized data in the region between 700–1800 cm-1 and 
2600–3100 cm-1. Pseudo-colour images generated from the 
clustering of the spectra were compared to the annotation of a 
pathologist and IHC staining. The stage of colorectal cancer 
was not considered in the training step. The Raman spectra for 
training of a supervised learning algorithm, RF,24 were 
extracted from these data sets. The spectra with high 
autofluorescence (1.1% of the total measured spectra in the 
present study) were removed by setting a threshold on the 
signal intensity of the raw data. Since Raman spectra of tissue 
section have different backgrounds (see Fig. S2 in SI), a fifth 
order polynomial was fitted to each spectrum to remove the 
residual spectral baseline for the classification with a RF. 
Supporting points were selected by applying a sweep 

Page 3 of 10 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
3 

N
ov

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 R
uh

r 
U

ni
ve

rs
ita

t B
oc

hu
m

 o
n 

03
/1

1/
20

16
 1

4:
50

:3
9.

 

View Article Online
DOI: 10.1039/C6AN02072K

http://dx.doi.org/10.1039/c6an02072k


Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

algorithm on the wavelet-denoised spectrum (Daubechies 
wavelet D4).30 After this step, spectra were normalized 
between 700–3100 cm-1 and offset corrected. The 
hyperspectral data was filtered in image space with a Gaussian 
window (3x3, σ=1). For the following classes / tissue 
components spectra were gathered for training from five 
different patients: carcinoma (471), connective tissue (793), 
muscle (1538), erythrocytes (140), crypts (963), lymphocytes 
(593), lymph follicle (202), background (1320). The RF 
classification was set up as a multistep procedure as shown in 
Fig. 1. In the first step the background was separated from the 
residual classes. Therefore spectra were additionally Savitzky 
Golay filtered (3rd order, window size ~50 cm-1). In the second 
step spectra were classified into the above mentioned classes. 
In the third step the spectra were normalized in the region 
between 700– 1800 cm-1 and 2600– 3100 cm-1 separately. The 
additional classification was run first on carcinoma and crypt 
classified classes only classifying the two classes. Afterwards 
the classification was performed on connective tissue and 
muscle classified components in the same way. Sensitivity and 
specificity of the classification were calculated by cross 
validation of the training data. 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. Multistep classification approach used for classification of different tissue 
components of colorectal carcinoma. 

The lymph follicle and carcinoma spectra are hardly 
discriminable for the RF, especially for low signal to noise ratio 
(SNR). For this reason the carcinoma and lymph follicle class 
was selected from the resulting RF. The corresponding spectra 
were parameterized by spectral curve deconvolution.31 
Features at 1240, 1337, 1390 and 1580 cm-1, were used to 
distinguish between both components by linear discriminant 
analysis (LDA). Single cell nuclei have the same spectral 
fingerprint as carcinoma, though they are strongly limited in 
their extension. Regions up to 10x10 µm are recognized as cell 
nuclei.  
The concentration of one component is directly proportional 
to its Raman intensity. Utilizing this information, we created 
images which reflect the integrated intensity information of 
the CH-stretching vibration and the pseudo-colour image of 
the RF. In this study these images will be referred as virtual 
staining. 
 

Multispectral CARS and SHG datasets were acquired in the 
2700-3000 cm-1 region. The datasets consist of 61 spectral 
images. CARS spectral datasets were normalized between 
2700 cm-1 and 3000 cm-1 and k-means clustering29 was applied.  
Likewise to the virtual staining of the RF the calculated 
pseudo-colour images of k-means were weighted by a 
combination of the CARS and SHG intensities at 2850 cm-1 and 
408 nm, respectively.  
Immunohistochemical staining 
All steps were done on a Bond maX/Bond II System (Leica 
miocrosystems, Wetzlar, Germany). The slides had first to be 
deparaffinised then the IHC staining was performed on the 
next adjacent slice. Afterwards, the slides were pretreated by 
heat for antigen-retrieval. The staining was performed by 
incubation of the tissue slides with primary antibodies of p53 
and MiB-1 (Ki 67) for 20 minutes. The Ki-67 antigen is a large 
nuclear protein (345, 395 kDa) expressed during all active 
phases of the cell. For the Ki-67 staining a monoclonal mouse 
anti-human antigen (Clone MIB-1) was used (Dako, Hamburg, 
Germany). Monoclonal mouse anti-human p53 protein (Clone 
DO-7) was used for detection of wild-type and mutant-type 
p53 protein for the identification of p53 accumulation in 
human neoplasia. After staining the tissue sections were 
washed according to the application details with different 
solutions of the Bond Refine Red Kit. In a last step the tissue 
slides were additionally stained with haematoxylin, in order to 
visualize the cell nucleus and endoplasmic reticulum (see also 
H&E staining) and fixed in ascending ethanol series and xylene. 
Images were obtained by using an Olympus microscope. 
H&E staining 
After data acquisition the tissue slides were stained with 
H&E.32  Staining of the cell nucleus and endoplasmic reticulum 
was achieved by incubation of the tissue with haematoxylin for 
15 minutes and 1 minute for deparaffinised and native tissues, 
respectively. After washing and stopping the haematoxylin 
reaction with H2O the cytosol was stained with eosin for 3 
minutes or 50 seconds for deparaffinised and native tissues, 
respectively. The tissue slides were washed with H2O and 
dehydrated in an ethanol gradient. The H&E stained tissue 
slides were evaluated by a pathologist (Department of 
Pathology of the Bergmannsheil Hospital in Bochum) and 
compared to the HCA results of Raman data in order to select 
spectra for the training of the RF classifier.   

RESULTS AND DISCUSSION 
Raman based SHP 
Raman based SHP of human colorectal tissue sections was 
used to obtain a high quality automated annotation of 
different tissue types and carcinoma regions. Before 
automated annotation can be performed it is important to 
build up a diverse set of spectra for the training of a classifier 
(see Fig. S1 in SI).  Each spectrum has to be representative for 
a certain tissue component, which can be distinguished by 
vibrational spectroscopy. In an earlier study, we showed the 
capability of Raman imaging with 532 nm excitation for label 
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free detection of carcinoma regions, lymphocytes, 
erythrocytes and p53 active areas in carcinoma area.23  
Here, by using the molecular information contained within the 
spectra, even more tissue components or cell types were 
automatically identified such as carcinoma tissue, connective 
tissue, muscle tissue, erythrocytes, lymphocytes, lymph follicle 
and crypts. The classification of tissue components was 
enhanced in the present study by developing a new multi-step 
classification scheme. The scheme is divided into two parts. In 
the first part a multi-step RF classifier (Fig. 1) was applied and 
classifies the classes, connective tissue, muscle, erythrocytes, 
lymphocytes, crypts, carcinoma and lymph-follicle. In the 
second part, parameters from a curve deconvolution were 
calculated for spectra which were identified as carcinoma or 
lymph-follicle. With these parameters, both classes were 
successfully reclassified by a LDA. Classified carcinoma regions, 
which were less than 10µm x 10 µm in size, were recognized to 
be cell nuclei. The datasets employed for the training step 
were excluded from validation. The datasets shown in this 
study for validation were acquired from an additional thin 
tissue section from patient with low grade and stage I 
colorectal cancer. 
An example of Raman based SHP results from one patient will 
be presented here in details. Fig. 2A displays H&E stained 
tissue of a colorectal adenocarcinoma. Haematoxylin stains the 
cell nuclei in blue/purple, while eosin stains the cytosol in 
different red coloured shades.32 The annotations of tissue 
components were performed by an expert pathologist.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. An image of H&E staining of a colorectal carcinoma tissue is shown in A. The 
colorectal adenocarcinoma is shown on the left side.  Regions shown in B-E were 
selected for the Raman imaging and show different compositions of tissue types such 
as carcinoma region, muscle, connective tissue, crypt, lymphocytes, and single cell 
nuclei. Panel B shows carcinoma, muscle, and connective tissue. Panel C displays the 
mucosa containing the crypts and the submucosa separated by lamina muscularis 
mucosae. Lymph follicle is depicted in Panel D, while the transition between the tunica 
muscularis and the tela serosa is shown in Panel E.  

These annotations were used to determine the regions of 
interest for Raman micro-spectroscopic measurements in the 
next step. The left side region of this tissue section shows the 

carcinoma area, whereas the right side region is non-
cancerous (normal) region. In order to confirm the presence of 
carcinoma we performed IHC staining of the tissue with p53 
and Ki-67 antibodies, which shows accumulation of p53 and Ki-
67 proteins, respectively, in the left side region of the tissue 
(see Fig. S3 in SI).32,33 According to the H&E staining and the 
IHC staining regions of interest were selected as displayed in 
Fig. 2. The selected regions show different tissue types 
characteristically for colon tissue. Panel B shows a carcinoma 
region, adjacent muscle and connective tissue. Panel C displays 
the border between the mucosa containing the colon crypts 
and the submucosa separated by a thin muscle layer called 
lamina muscularis mucosae, which plays an important role in 
the diagnosis of colon cancer. In panel D a part of a lymph 
follicle is presented, whereas panel E shows the transition 
between the tunica muscularis and the tela serosa.  
For the diagnosis, it is important to differentiate between 
cancer, crypts and the membrane muscle layer. Fig. 3A and B 
show the transition from the mucosa containing the crypts to 
the submucosa. The two tissue types are separated by the 
lamina muscularis mucosae. We were not only able to 
automatically identify the nuclei part of the crypt (dark purple) 
but also the lamina muscularis mucosae (salmon). 
Furthermore, connective tissue (green) and even cellular 
shaped features like lymphocytes (pink), erythrocytes (olive) 
and undefined cell nuclei (blue) were automatically identified. 
Although a few pixels were misclassified, Raman SHP in Panel 
B reproduces all information from the H&E staining image 
(Panel A). In Fig. 3C, the p53 IHC staining for the selected 
carcinoma region in Fig. 2B is shown. Cancer regions (red) 
were identified by Raman based SHP (Fig. 3D) and these 
results are in an agreement with the IHC stained carcinoma 
area (Fig. 3C). The p53 active cancer (Fig. 3C) were obtained in 
the Raman SHP image (Fig. 3D) as red region. Inside the cancer 
region remaining goblet cells (dark purple) and infiltrating 
immunocompetent cells were observed (pink). The cancer 
region can be clearly separated towards the neighbouring 
muscle region (salmon). Small morphological differences were 
observed between IHC and SHP images because adjacent 
tissue slices were used.  
The mean training spectra of these components are shown in 
Fig, S4 (see SI). The low standard-deviation of each class of the 
spectra, shown in grey, confirms the consistency of each class. 
In our continued approach towards Raman based automated 
SHP of colon carcinoma, we detected clear differences 
between carcinoma and connective tissue. Since the clinical 
use of the method is in focus, this clear differentiation was one 
of the main goals of our approach, and thus of great 
importance. The spectral differences between carcinoma and 
connective tissue are shown in details in Fig. 4a. These spectra 
were improved regarding their standard deviation compared 
to our previous study.23 This is because new spectra were 
added for the training and spectra with a lower SNR were 
removed. 
Large spectral differences between carcinoma and connective 
tissue are found. For example, the spectral differences can be 
found at 1330 and 787 cm-1, indicating higher protein and DNA 
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content, respectively, in the carcinoma spectra. These results 
are similar to those reported previously.4 A peak also appears 
at 1586 cm-1, representing guanine and adenine (ring 
breathing modes of DNA bases).4 The higher amount of DNA 
caused by enhanced proliferation is confirmed by the IHC 
staining for Ki-67 (See Fig. S3). 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison of H&E and IHC staining with Raman SHP of selected regions from 
colorectal carcinoma tissue presented in Fig. 2. (A) H&E staining of a region showing 
the transition from the tunica mucosa to the tela submucosa. (B) Raman SHP of the 
same region shown in (A). Salmon: muscle, dark purple: crypts, green: connective 
tissue, blue: cell nuclei, olive: erythrocytes, pink: lymphocytes. (C) IHC staining by p53 
antibody of a region showing the transition between carcinoma tissue and healthy 
tissue. Accumulation of p53 is shown in red. (D) Raman SHP of the same region shown 
in (C). Red: carcinoma, green: connective tissue, salmon: muscle, dark purple: crypts, 
blue: cell nuclei. 

The increased content of protein and DNA in carcinoma was 
also found by a Raman imaging study on gastric cancer34 and in 
a fiber-optic approach for colon cancer.31 On the other hand 
higher lipid contents were detected in the connective tissue 
spectra through the Raman bands at 860 and 1458 cm-1. 
Higher lipid contents were also observed in the crypt in 
comparing with carcinoma through a Raman band at 1458 cm-1 
as shown in Fig. 4b. In addition, crypts and lamina muscularis 
mucosae can be separated more clearly (Fig. 3B) in the present 
study. The differentiation between the crypts in mucosa and 
lamina muscularis mucosae is crucial for cancer diagnosis. This 
is because adenomas are formed in the mucosa, while the 
penetration of the lamina muscularis mucosae layer by 
carcinoma is defined as invasive cancer (see details in CARS 
results).  
As different cell types, erythrocytes and lymphocytes were 
identified. The class of the erythrocytes shows the most 
characteristic spectra, since its hemoglobin is in resonance 
condition with 532 nm excitation laser. Due to normalization 
the enhancement caused by the resonance is not seen in the 

spectrum (Fig. S4 in SI). Nevertheless, the spectra shows 
enhanced characteristic bands for heme.18,35,36  
Differences in the spectra of lymph follicles and single 
lymphocyte cells in the tissue were also detected (see Fig. S5 in 
SI). The lymphocyte spectra have a characteristic pattern due 
to the large lipid content, with a strong band around 1443 cm-1 
assigned to the CH2 bending mode.37 Brown et al. showed that 
it is possible to differentiate lymphocytes in different stage.38 
Furthermore, they reported small but significant differences in 
the Raman spectra of activated and non-activated T-
lymphocytes. This could also be the reason for the spectral 
differences observed here between cells in the lymph follicle 
and the other lymphocytes within the tissue (see Fig. S5 in SI). 
The characteristic lipid bands are less intense in the spectra of 
the lymph follicle, where a higher content of protein bands are 
found. Thus, these results demonstrate the capability of 
Raman based SHP as a label-free method for recognition of 
several tissue components simultaneously and in an 
automated way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Wavelet-denoised Raman mean spectra of carcinoma (red), connective tissue 
(green), and crypt (black) used in Raman RF. The spectra are shown in 725-875 and 
1210-1790 cm-1 regions. 

Virtual staining by Raman micro-spectroscopy  
Information of the local concentration of the single molecules 
and therewith components is lost due to the use of data 
correction and pre-processing. In order to get a high quality 
Raman SHP image with this additional information, we 
describe a new method to regain this structural Raman based 
SHP image by using the information provided by the integral 
Raman intensity from 2800-3050 cm-1 as shown in Fig. 5. The 
integrated Raman intensity image in the 2800-3050 cm-1 
region is displayed in Fig. 5A, whereas Fig. 5B shows the 
Raman based SHP of the same region with the analysis scheme 
(single step RF) of the previous publication.23  
The area shows the outer muscle layer of the colorectum 
(muscularis propia) at the top right corner, and the adjacent 
connective tissue (subserosa) at the bottom left. Especially in 
the muscle area the Raman based SHP (Fig. 5B) shows a 
problem with a lower SNR and the single step RF: a lot of 
misclassified pixels were recognized in the pseudo-colour 
image, which give the impression of a noisy image. By using a 
Gaussian filter (3x3 gaussian matrix, σ=1) and a multistep RF 

Page 6 of 10Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
3 

N
ov

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 R
uh

r 
U

ni
ve

rs
ita

t B
oc

hu
m

 o
n 

03
/1

1/
20

16
 1

4:
50

:3
9.

 

View Article Online
DOI: 10.1039/C6AN02072K

http://dx.doi.org/10.1039/c6an02072k


ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

(see data analysis section) the Raman based SHP was further 
improved as shown in Fig. 5C.  
The image displays a large improvement to the Raman based 
SHP in Fig. 5B. The muscle (salmon) and the connective tissue 
(green) can be separated precisely. Nevertheless, the 
representation of the tissue appears very flat and homogenous 
within one component. 
The concentration of molecules within a voxel is directly 
proportional to the integrated Raman intensities. Therefore, 
information of the detailed structures of a certain tissue can 
e.g. be obtained from the integrated signal of the CH 
stretching vibrations in the 2800-3050 cm-1 region. 

 
Figure 5. Raman virtual staining of tissue. (A) Integral Raman intensity image in the 
2800-3050 cm-1 region collected from muscle and connective tissue region. (B) Raman 
pseudo-colour image constructed from a single step Raman RF classifier on baseline 
corrected and normalized data. (C) Raman pseudo-colour image constructed from a 
multistep RF with Gaussian filtered data image space and normalization. Salmon: 
muscle, green: connective tissue. (D) Raman virtual staining, constructed from Raman 
intensities in (A) overlaid with (C). 

A combination of the pseudo-colour map of the classification 
and the Raman intensities allows displaying of fine structures 
such as the filamentous structure within muscle tissue and its 
orientation (Fig. 5D). This increases the information content of 
the presented data and gives an impression of colouring the 
tissue structure with our classification, which is comparable to 
stained tissue with dyes. Thus, instead of using a dye as in H&E 
staining, this method provides a label-free way to virtually 
stain a tissue and is therefore, a non-invasive approach. An 
advantage of the label-free Raman imaging in comparison with 
H&E is that the same tissue section can be also used in a non-
invasive manner for further analysis, like next generation 
sequencing, proteomic analysis, or immunohistochemistry. In 
principle, immunohistochemistry can be performed after H&E 
de-staining but it is invasive method and the probability of 
losing the tissue sections during this process is relatively 

high.39 The virtual staining approach was applied to the 
previously selected regions shown in Fig. 2B-E. Fig. 6 shows the 
H&E staining of the four selected regions (A,D,G,J) in direct 
comparison to the Raman SHP (B,E,H,K) and the virtually 
stained Raman images (C,F,I,L). 
The picture clearly shows the enhanced visualization of the 
muscle fibres (salmon) and connective (green) tissue. The 
resolution of Raman imaging intensities over the CH stretching 
vibrations is roughly equal to the conventional imaging of the 
H&E, and sometimes even seems to deliver a more detailed 
and sharper representation of the sample. The same images 
can be created with black background if necessary (see Fig. S6-
S8 in SI). 

 
Figure 6. Comparison of H&E staining, Raman SHP and Raman virtual staining. (A,D,G,J) 
H&E staining of selected regions of interest shown in Fig.1. (B,E,H,K). Raman SHP of the 
same regions shown in (A,D,G,J). Red: carcinoma, green: connective tissue, salmon: 
muscle, dark purple: crypts, pink: lymphocytes, olive: erythrocytes, purple: lymph 
follicle. (C,F,I,L) Raman virtual staining, constructed from Raman SHP shown in (B,E,H,K) 
and their corresponding integrated Raman intensities in the 2800-3050 cm-1 region. 

The sensitivity and the specificity for carcinoma recognition 
are at 96 % and 98 %, respectively, as shown in Table 1. This 
shows how precise the carcinoma can be allocated. Other 
approaches using Raman spectroscopy on carcinoma or basal 
cell carcinoma show similar results for the sensitivity and 
specificity.40,41 
The virtual stained images give comparable results to the 
stained and labelled tissue sections. This proves Raman based  
SHP as a label-free supplement to the standard methods of 
diagnosis, as H&E and IHC staining. It does not only identify 
biomarker in human tissue, as shown here for colorectal 
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cancer, but it can be also used as a diagnostic assistant 
technique. 
 

 
 
 

 

 

 

 

 

Table 1. The sensitivity and specificity for recognition of different tissue classes. 

 

 
Fast imaging by CARS micro-spectroscopy 
One disadvantage of the conventional Raman micro-
spectroscopy is that Raman measurements are slow. This is a 
problem for clinical applications that require generally fast 
measurements. For instance, the surgeon has a short time 
during the surgery until the pathologist determines the 
cancerous part of tissues that is necessary to be removed. To 
overcome the speed problem of the Raman measurements 
and make it fit with clinical applications, non-linear techniques 
such as CARS or stimulated Raman scattering (SRS) that can be 
performed at a speed up to video rate, have to be used.42,43 Ji 
et al.26 showed that SRS is able to detect brain carcinomas 
using a linear combination of SRS images at 2845 and 2930 cm-

1 in a rapid and label-free way, but didn’t include any 
bioinformatics approach to aid the pathologist. In addition, 
Bocklitz et al.44 have used a combination of CARS, two photon 
excited autofluorescence (TPEF), and SHG to produce pseudo-

HE images of tissue by multivariate statistics. This method is 
proposed to be a fast and precise pathological screening tool.  
 CARS imaging at a single wavenumber is very common in 
bio-spectroscopy. For instance, CARS imaging near 2850 cm-1 
has been used to monitor lipid distribution in tissues or lipid 
droplets in cancer cells.27,45–47In addition to imaging at a single 
wavenumber, Potma et al.45 used CARS spectra in the C—H 
stretching region coupled to principle component analysis to 
image meibomian glands. We have also used similar approach 
including CARS spectra in the C—H stretching region and 
cluster analysis to identify subcellular organelles of cancer 
cells.27 Generally, clustering of CARS spectra produces pseudo-
colour image, which represents the various spectral 

distribution over the examined tissue section. Different tissue 
components shown in the pseudo-colour images can be 
identified by comparison with the corresponding an H&E 
stained image of the same tissue section or the next adjacent 
tissue slice as shown in the workflow of SHP (Fig. S1). This 
would provide more information than those can be obtained 
from CARS imaging at a single wavenumber. Here, we have 
used CARS spectra in the C—H stretching region in 
combination with SHG and cluster analysis to set the stage for 
automatic identification of different tissue components. 
 The H&E staining images shown in Fig. 7. display regions 
with benign (A) and carcinoma (E) morphological features. For 
instance, Panel A shows the transition from the mucosa 
containing intact crypts to the submucosa and they are 
separated by the lamina muscularis— mucosae. In Panel E, 
cancer with a low analplasia can be seen. The original structure 
of the crypt regions still can be observed. Fig. 7B and F display 
the k-means clustering result of CARS spectra in the 2700-3000 
cm-1 region of the tissue sections shown in Panels A and E, 

 Sensitivity % Specificity % 
Carcinoma 96 98 

Crypts 96 99 
Lymph follicle 86 99 

Connective tissue 93 99 
Muscle 98 99 

Lymphocytes 99 99 
Erythrocytes 100 100 

Figure 7. Comparison of H&E, SHG, and CARS imaging of benign and carcinoma regions from patient with low grade and stage IIA colorectal carcinoma. (A,E) H&E staining of 
selected regions of interest. (B,F) k-means clustering of CARS spectral datasets. (C,G) Intensity images of both SHG at 408 nm and CARS signals at 2850 cm-1. (D,H) Constructed 
images from k-means clustering of CARS results (B,F) and intensities of both CARS and SHG (C,G). 
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respectively. These Panels accurately reproduces the 
structures that are apparent in the H&E stained images: the 
intact crypts (cyan and pink), submucosa (dark blue), and 
lamina muscularis mucosae (purple) are clearly shown in Panel 
B, while carcinoma (pink) is displayed in in Panel F. Examples 
of the CARS mean spectra that are obtained from k-means 
clustering are shown in Fig. S9 (see SI). 
Fig. 7C shows a combination of the SHG (408 nm) and CARS 
intensities at 2850 cm-1. SHG of tissues at 408 nm visualizes 
mainly the fibrous collagen network, whereas the CARS 
intensity at 2850 m-1 depicts the lipid rich regions in tissue. To 
obtain more information about the structural details, the 
pseudo-colour images of k-means (B and F) are combined with 
the intensity images of both SHG and CARS (C and G) and the 
results are displayed in Panels D and H.  
Although the concentration of one component is non-linearly 
proportional to its CARS or SHG intensity, such a combination 
improves the quality of the images as shown in details in Fig. 
S10 and S11 (SI). These results are comparable to the H&E 
staining (Fig. 7A and E, see also Fig. S10 and S11). The images 
(Fig. 7D and H) display an improvement in comparing with the 
pseudo-colour image of k-means clustering (Fig. 7B and F). For 
instance, the crypt (cyan and pink), the connective tissue (blue 
and olive), lamina muscularis (for example purple) can be 
separated precisely from one another (Fig. 7D). The invasive 
carcinoma is clearly visible in Panel H. Furthermore, the 
detailed structures of these components are more visible in 
Fig. 7 D and H. Similar to the Raman virtual imaging shown 
above (Fig. 6), images of high structural details can be 
generated with a faster imaging technique such as CARS.  

CONCLUSIONS 
We have presented that Raman based SHP can differentiate 
between several tissue components, including cancer, 
connective tissue, muscle, crypts, lymphocytes, lymph follicle, 
and erythrocytes. The information content of the pseudo-
colour images can be further improved by overlaying the 
Raman intensities of the C—H stretching vibrations with the 
Raman based RF images. By this new method, virtual staining, 
structural details of the tissue such as fibres can be revealed 
and thus improves the representation of the highly resolved 
images. Virtual staining by Raman based SHP provides a 
realistic display of the tissues structure similar to conventional 
staining techniques like fluorescence imaging and allows a 
better direct comparison to the H&E staining method. The high 
sensitivity and the specificity for cancer recognition confirm 
how precise the cancer can be automatically detected. This 
method could therefore help the pathologist to diagnose 
cancer allocated regions and early stages of the disease with 
high precision in order to improve patients life quality.  
Recent studies focus on fast measurements of tissue using 
non-linear techniques such as SRS, but lack the 
bioinformatics.26 Pseudo-HE images of tissues was also created 
using CARS/TPEF/SHG to be used as a pathological screening 
tool.44 On the other hand, pseudo-colour images of k-means of 
CARS spectra in the CH stretching region and SHG at 408 nm 

was used to produce a highly resolved pseudo-colour images 
that can be used to differentiate between different tissue 
types. A combination of the presented data evaluation and 
CARS measurements paves the way for fast clinical label-free 
diagnostics. Our next step is to perform CARS measurements 
of native colorectal cancer tissues from several patients to 
obtain a large data set that enables us to perform automatic 
recognition of various tissue components including carcinoma. 
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Supplementary Information

Fig. S1. Workflow describing the training and validation stages for Raman based SHP. The 
pseudo-colour images created by unsupervised learning algorithm are annotated by 
pathologist with help of H&E and IHC staining. These spectra build up a training data set for 
a supervised learning algorithm (RF), which can classify other tissue slides automatically.
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Fig. S2. Effect of baseline correction on Raman spectra. Raman spectra of tissue at different 
pixels without (a) and with baseline correction (b). 



Fig. S3. Immunohistochemical staining of colorectal carcinoma tissue slide presented in Fig. 
1. (A) Immunohistochemical staining of a colon tissue section by p53 antibody. Accumulation 
of p53 is shown in red. (B) Immunohistochemical staining of a colon tissue section by MiB-1 
(Ki-67) antibody. Proliferating cells are shown in red. 



Fig. S4. Raman mean spectra of tissue components used in Raman RF classifier. The spectra 
are wavelet-denoised and the standard-deviation is marked in grey. The spectra are shown 
from 700-3500 cm-1.



Fig. S5. Raman mean spectra of lymphocytes and lymph follicle used in Raman RF. The 
spectra are wavelet-denoised and the standard-deviation is marked in grey. The spectra are 
shown from 700-3500 cm-1. The difference spectrum is showed in black.



Fig. S6. Alternative representation for Fig. 3. Direct comparison of H&E and 
immunohistochemical staining with Raman virtual staining of selected regions from 
colorectal carcinoma tissue slide presented in Fig. 2.

Fig. S7. Alternative representation for Fig. 5. Improvement of representation of Raman based 
SHP and establishment of Raman virtual staining.



Fig. S8. Alternative representation for Fig. 6. (A,D,G,J) H&E staining of selected regions of 
interest shown in Fig. 2. (B,E,H,K) Raman SHP of the same regions shown in (A,D,G,J). 
(C,F,I,L) Raman virtual staining, constructed from Raman SHP shown in (B,E,H,K) and their 
corresponding integrated Raman intensities in the 2800-3050 cm-1 region.



Fig. S9. CARS mean spectra of carcinoma (pink), connective tissue (blue), and tumor micro-
environment (yellow). These spectra are produced using k-means clustering of CARS spectral 
dataset. For illustration the spectra are median filtered in the frequency domain.



Fig. S10. Constructed images from CARS k-means clustering analysis weighted with 

intensities of CARS (A), SHG (B) and both together (C). The pure intensity images of CARS 

at 2850 cm-1 (D), SHG (E) and combined CARS and SHG (F) are also displayed.  

Similar to the Raman virtual staining, we created intensity weighted pseudo-color images 
from k-means cluster analysis of CARS datasets. The pseudo-color image in Fig. 7B was 
weighted here with the CARS intensity at 2850 cm-1 (A,D), with the SHG intensity (B,E) and 
with a combination of both intensities (C,F). It is important to note that the intensities are non-
linear in comparison to the linear Raman signal.



Fig. S11. Constructed images from CARS k-means clustering analysis weighted with 

intensities of CARS (A), SHG (B) and both together (C). The pure intensity images of CARS 

at 2850 cm-1 (D), SHG (E) and combined CARS and SHG (F) are also displayed.  
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