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Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in
increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on
the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advan-
tage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instanta-
neous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on
the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical
measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and
samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101)
from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for
Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples
are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme,
three different outlier identification methods were investigated to decrease the influence of systematic errors,
like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue)
and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-
out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-val-
idation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and
an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%.
Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Early recognition of cancer plays a key role for decreasing the mor-
tality and morbidity rate in patients. Colorectal cancer is one of the
most common cancers worldwide with over 1.3 million new cases and
694,000 deaths per year [1]. Routine screening and an early recognition
of colorectal cancer and its precursor lesions such as premalignant
polyps, primarily adenomas, can help to decrease this number [2].
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Since the colon is rather simple to access, endoscopy of the colon
(colonoscopy) is recommended as screening method for adults in vari-
ous countries [3]. In routine diagnostics, cancerous and precancerous
lesions are detected by using conventional white light reflectance [4]
and chromoendoscopy [4,5]. Additional narrow band imaging [4,6]
and fluorescence endoscopy [4] are used at times. After recognition, a
suspicious tissue area is resected as biopsy sample and sent to histolog-
ical assessment. Usually after particular preparation the specimen is his-
tochemically stained, examined under a light microscope and the
diagnosis is reported to the referring physician. For the physician not
only the differentiation between carcinoma and normal tissue, but
also a differentiation between precancerous adenomas and hyperplastic
polyps is essential [7,8]. Up to now, the endoscopic characterization of
polyps regarding histology shows inadequate reliability [9]. Therefore,
many polyps with minimal malignant potential are removed without
benefit for the patient, but still accompanied by this is a residual risk
of bleeding and perforation after colonic polypectomy [10]. Further-
more, a small but not deniable number of precancerous adenomas,
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especially, if they are smaller than 10 mm, are missed during colonosco-
py [11]. Hence Wallace et al. [4] pointed out that an improved detection
and in vivo classification of colorectal polyps are needed.
Complementing the morphological information with knowledge of the
biochemical properties can help in a targeted selection of biopsy sam-
ples. By this a reduction or abandonment of polypectomy can be
achieved, while simultaneously the automatization of tissue assessment
will be increased.

This automatization in diagnostics can be realized using spectral his-
topathology, which relies on vibrational spectroscopy, like infrared and
Raman spectroscopy [12-15]. Raman spectroscopy is capable of mea-
suring the biochemical fingerprint of a tissue sample in a label-free
manner, and consequently information of the tissue composition is ob-
tained instantly [16,17]. For example with Raman microspectroscopy
cancer can be differentiate from normal tissue with a high sensitivity
(>95%) and specificity (>95%) [13,18]. This immediate analysis of the
tissue composition during medical examination can be used in endosco-
py. It can lead the physician to select a suitable spot for the biopsy, en-
ables a reduction of complications, saves histopathological assessment
time, benefits the patient and reduces economic burdens. Raman spec-
troscopy is based on the inelastic scattering of light. It reflects the bio-
chemical fingerprint by monitoring the molecular vibrations and
therewith provides information about the chemical composition of the
tissue and the progression of carcinogenesis [19,20]. Using laser light
as excitation, the wavelength shifts from the monochromatic laser line
are recorded, and a measurement without a resection of a biopsy sam-
ple can be conducted [21].

Different groups have shown the potential of Raman fiber-optics for
ex vivo and in vivo cancer diagnostics [22-26]. However, further im-
provements of Raman fiber optics for endoscopy are required [27]. In re-
cent publications for Raman spectroscopy applied in colonoscopy,
respectively on samples from colonoscopy, Wood et al. [28] and
Bergholt et al. [29] showed the applicability of Raman fiber-optics.
Wood et al. had undertaken an ex vivo study on 177 patients with a
fiber probe constructed by Day et al. [30] and analyzed the data in the
fingerprint region. On defrosted snap frozen samples they were able
to differentiate between normal tissue and various lesions (e.g.
adenoma and adenocarcinoma) using only a leave-one-spectrum-out
cross-validation approach, which might be influenced by spectral simi-
larity of the same sample and does not reflect the measurement of un-
known samples. Normal tissue vs. adenocarcinoma or adenoma was
classified with an accuracy of 88.5% and 88.3%, respectively. Further-
more, adenoma was separated from hyperplastic polyps with an accura-
cy of 78%. Bergholt et al. [29] conducted in vivo measurements on 49
patients (121 samples) with a self-developed fiber probe in Singapore.
They distinguished between high- and low-risk lesions (14 vs. 35 pa-
tients, 17 vs. 104 samples) using a leave-one-sample-out cross-valida-
tion approach with a majority vote over all spectra of the same
sample. High-risk lesions were separated from low-risk lesion with an
accuracy of 90.9%. Adenoma was separated from hyperplastic polyps
with an accuracy of 81.8%. Because of limited number of measurements
and patients leave-one-out cross-validation approaches are preferred
for validation in Raman fiber optical studies.

Even in well prepared study designs, a residual risk in misplacement
of the sample, misidentification of the sample by the pathologist and a
dilution of the spectral marker (loss of spectral cancerous markers due
to a mixture of multiple tissue components) remain. If these spectra
persist in the training data, the classification will be impaired, especially
by the small differences observed. Therefore identification approaches
for outlying measurements could be included, only if a sufficient num-
ber of patients is acquired. For an improved training database, several
approaches of outlier identification schemes are suggested in the litera-
ture [31,32]. For instance the Local Outlier Factor (LOF) works as a den-
sity based method to identify abnormal data points [33].

In this study, Raman fiber optical measurements of colon biopsy
samples taken during colonoscopy were carried out. We analyzed for

the first time a large data set of 343 biopsy samples from 151 patients
with multiple leave-out cross-validation schemes and outlier identifica-
tion approaches, which allows an enhanced setup for a training data-
base. With this, we were able to improve the analysis and training of
classification models for tissue type differentiation that can be used
for Raman endoscopic measurements.

2. Materials and Methods
2.1. Sample Collection, Preparation and Medical Assessment

Ethical approval was granted from the institutional review board of
the Ruhr-University Bochum (Faculty of Medicine, reference number
4886-14). Consecutive patients undergoing elective colonoscopy in the
Knappschaftskrankenhaus Bochum-Langendreer were enrolled. During
colonoscopy biopsies of around 1-4 mm? in size were taken with a stan-
dard biopsy forceps. Larger polyps were resected with a polypectomy
snare if suitable. The resected tissue was washed in physiological NaCl so-
lution and up to 10 spectra per sample were measured immediately on
the fresh tissue by Raman spectroscopy at different positions. Afterwards,
the standard clinical workflow was undertaken, i.e. fixation with formal-
dehyde and examination by an expert pathologist. The histological as-
sessment is based on standard staining using hematoxylin and eosin
(H&E) and additional immunohistochemical methods if necessary. The
pathologist's report was set as reference for the classification model.

2.2. Setup

Raman measurements were conducted using a commercially avail-
able B&W Tek i-Raman Plus system (B&W Tek, Delaware, USA). The in-
strument is equipped with a 785 nm laser with a maximum laser power
of roughly 300 mW at the sample and is set to measure a Raman shift
interval from —220 cm™ ! to 3310 cm™ ! with a spectral resolution of
about 3.3 cm™ L. The standard fiber probe head (BAC102) was boxed
in, and additional sample holders were constructed to be exchanged
on the top of the probe head for each patient after the measurement
(see Fig. S1). The distance between the shaft and the window of the ex-
changeable sample holder was adjusted by a silicon slide on top of the
window. The measurement volume (penetration depth) was set to
250 um above the window, on which the samples is placed, based on
the maximum signal of the silicon at 520 cm™!. With a core width of
105 pum for the excitation fiber, 200 pm for the collection fiber, a spot
size at the sample surface of 85 um according to the manufactures and
a penetration depth of 250 pm, we estimated the diameter of the mea-
surement volume to a factor 2-3 of the spot size for the modified
setup, i.e. around 200-250 pum. Spectra were integrated for 2 s and aver-
aged over five accumulations for each spot. A graphical user interface
was programmed for an easy control of the measurement by the clini-
cian. Since there is no Raman fiber probe for in vivo measurements is
approved in Germany, we conducted an ex vivo study.

2.3. Data Analysis

The raw data were processed in Matlab Version 7.14 along with the
Image Processing and Statistics toolboxes (The Mathworks, Inc., Mass.,
USA) and algorithms developed in-house. At first, spectra of single
spots were averaged and corrected for wavelength dependent absorp-
tion of the fiber probe. Afterwards cosmic spikes were corrected and
the fraction of water was estimated from the band area between
3100 cm™ ' and 3300 cm™ . The spectrum of water with the estimated
intensity was subsequently subtracted. The baseline was corrected sep-
arately for the fingerprint region and the CH-stretching region with the
airPLS algorithm [34], and spectra were normalized for the intervals be-
tween 950 cm™ ' and 1800 cm™ ! and 2800 cm™ ! and 3050 cm™ ' as a
standard procedure for comparison of Raman spectra from different
measurements [16].
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These spectra with parameter from the raw spectra are inspected by
a spectral quality control algorithm, which sorts out spectra with low
SNR and artifact affected spectra on the base of fluorescence and
Raman signal intensity. The variance of the mean spectra was normal-
ized to the number of patients (Varpagens = var/n).

After assignment of the spectra to the annotations of the pathologist,
spectral features selected by minimum redundancy maximum rele-
vance feature selection [35,36] were chosen to train a Support Vector
Machine (SVM). SVM models were validated by leave-one-patient-
out, leave-1/3-patient-out, leave-one-sample-out and leave-one-spec-
trum-out cross-validation, respectively. For each cross-validation meth-
od single spectra were used for validation with random subsampling by
2000 iteration steps for leave-patient-out approaches and 5000 itera-
tion steps for leave-one-sample-out and leave-one-spectrum-out ap-
proaches. In the leave-one-patient-out and leave-one-sample-out
approach a maximum of six spectra per patient/sample were random-
ized chosen for validation.

Since inaccuracies during measurement and pathological annotation
cannot completely be excluded, three different approaches for outlier
identification were applied: One Class Classification with SVM (OCC)
[31,37], Local Outlier Factor (LOF) [31,33] and a supervised approach for
modeling normality and abnormality [32], which is named Refinement
of Training Data (RoTD) in the following. OCC and LOF were applied on
the spectra of the single classes. RoTD was applied as a preclassification
scheme for the single classes against the other classes. For all three
methods, outlier were identified and disregarded for training the SVM
models. Nonetheless all spectra are used for validation. The outlier identi-
fication methods are further described in the SI. The distribution of the
identified spectra is displayed in the Venn diagram in Fig. S2.

For an estimation of the minimum fraction of cancer within the mea-
surement volume of the fiber probe a simple model was developed.
Here, Raman microscopic data of thin sections from native colon tissue
was used to simulate an integral spectrum with different tissue compo-
nents which occur in the measurement volume of the fiber probe. Spec-
tra of large confocal volumes (ca. 1 mm?) and mixed components as
obtained for the fiber-optical approach were simulated with Raman
microspectroscopic data of pure components from measurements of
colon tissue. This data was received from tissue which was mounted
as thin section on a Raman microscope (Horiba XploRA One, 785 nm),
dried with a stream of dried air and measured in a raster of 5 um x 5
um. Data for simulation were collected on the base of hierarchical clus-
ter analysis and the corresponding H&E annotation. With this data, sin-
gle high volume component spectra were simulated with 200 spectra
from the training set in varying compositions and classified with a ran-
dom forest model, which was trained on the microscopic data. The frac-
tion of cancer was varied stepwise from 0%-100% for each composition
with additional tissue components (s. single line in Table 4 and Table
S1). For each step the simulation of a single high volume component
spectrum was repeated 400 times with randomized chosen spectra for
simulation and training. Afterwards the minimum fraction of cancer
that still leads to the classification as cancer was determined. This calcu-
lation defines a minimum fraction for cancer detection.

3. Results and Discussion

The automated and instant recording of the biochemical fingerprint
has the potential to decrease complications and examination time during
endoscopy. We set up an ex vivo study for automated label-free detection
of cancer and precursor lesions. Therefore, we analyzed Raman measure-
ments of 343 biopsies from 151 patients who underwent colonoscopy be-
tween 02/2014 and 09/2015 using the fiber-optic approach. The biopsies
were categorized into the following pathologies: adenocarcinoma (AC),
tubular adenoma (TA), hyperplastic polyp (HP), and normal colon tissue
(NT, unsuspicious mucosa). Table 1 lists the number of patients, samples
and spectra for the particular annotations including the average age and
gender distribution of the patients. A spectral quality test was set up to

exclude spectra with low SNR or artifacts. Furthermore biopsies with
other annotations (e.g. serrated adenoma, sigmoiditis) and a differentia-
tion of the grading of AC were not considered in the analysis.

The workflow for data analysis was established as shown in Fig. 1.
Colon biopsy samples were measured using the routine clinical
workflow, including the subsequent annotation by the pathologist. For
validation this workflow was extended by a leave-one-out cross-valida-
tion scheme including outlier identification. The outlier identification
was aimed to avoid inaccuracies in positioning of the sample, from an-
notations of the pathologist and spectral dilution. A different distribu-
tion of multiple tissue components within the biopsy sample can lead
to a position dependent spectrum. For validation purposes, we decided
to use the leave-one-patient-out cross-validation scheme (LOPO CV) to
avoid intra-patient sample spectrum similarity. A support vector ma-
chine (SVM) was used for classification. The groups of pathologies
were separated by binary classifiers. On the one hand annotations
were grouped in low-risk lesions (HP, NT) and high-risk lesions (AC,
TA), respectively. On the other hand single annotations, like the clinical
relevant TA and HP, were separately differentiated. Mean spectra of the
annotated samples are shown in Fig. 2A. Difference spectra between the
mean spectra of the impaired and the normal tissue are shown in Fig.
2B. Additional difference spectra of the groups of pathologies, as com-
pared in the present study, are displayed in Fig. S3. Standard deviation
normalized to the number of patients is illustrated in grey. Raman
bands, for example, at 1003 cm ™! (ring breathing of phenylalanine),
1263 cm ™! (amide I11), 1318 cm™ !, 1448 cm™ ! (CH, deformation of
proteins and lipids), 1657 cm ™! (amide 1), 2850 cm ™' (CH, stretching),
and at 2930 cm ™~ ! (CHj5 stretching) are in agreement with the literature
[19,29,38]. Spectral differences were found for 1275 cm™! (Amid III),
1467 cm™ ' (CH bending vibration), 1582 cm™! (indole ring) and
1634 cm™ ! (Amid I) [38,39]. Further changes from assigned bands in
the mean spectra were not observed. We obtained most substantial
spectral differences for AC in comparison with NT, followed by HR and
NT. Minor differences were observed for HP versus NT.

For the clinical purpose, not only the precise annotation to a single
class is relevant, but also the differentiation of high-risk and low-risk le-
sions. As described above, AC and TA were combined to the group of
high-risk lesions, whereas HP and NT were grouped to low-risk lesions
[4,29]. Table 2 contains the leave-one-patient-out cross-validation re-
sults for the different groups and single annotations of the cross-valida-
tion including and excluding outlier spectra in the training phase. We
achieved accuracies between 62% and 81%. When disregarding any out-
lier identification, classifying AC vs. NT reached an accuracy of 75%. OCC
shows an improvement in accuracy with 77% (+ 2%), whereas for the
LOF approach the accuracy stays the same with 75% (+ 0%). A significant
improvement is obtained by the RoTD algorithm with sensitivity, spec-
ificity and accuracy of 79% (+6%), 83% (+5%) and 81% (+ 6%), respec-
tively. Concerning the high- and low-risk lesions, the accuracy is 71%
without outlier identification. For OCC it drops to 70% (— 1%), while
for LOF it raises to 72% (+ 1%). Again, an obvious improvement is
reached by the application of RoTD with an accuracy of 77% (+ 6%). Of
all, the RoTD outlier identification allows the best improvement for
the recognition. For OCC and LOF, the average improvement in accuracy
in comparison with a disregard of any outlier identification is 1%. In de-
tail, both methods induce mostly slight improvements and a few cases
of impairments. In contrast, the average improvement in accuracy for

Table 1
Number of patients, samples and spectra analyzed in this study. The average age and the
number of male and female patients are listed in the last two columns.

Patients ~ Samples  Spectra  Age  M/F
Normal tissue (NT) 56 101 204 57 23/33
Hyperplastic polyp ~ (HP) 46 79 180 65 26/20
Tubular adenoma (TA) 69 141 404 68 34/35
Adenocarcinoma (AC) 13 22 65 74 10/3
Sum 151 343 853 64 77/74
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Fig. 1. Workflow for clinical measurements and data analysis with outlier identification.

the RoTD is 7%. In comparison to OCC and LOF, a clear improvement for
every compared combination of the pathological groups is achieved.
Different research groups applied different leave-one-out cross-vali-
dation schemes, like Wood et al. [28] (leave-one-spectrum-out) and
Draga et al. [24] (leave-one-sample-out). Bergholt et al. [29] extended
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Fig. 2. (A) Mean spectra of normal tissue (NT, green), hyperplastic polyp (HP, black),
tubular adenoma (TA, blue) and adenocarcinoma (AC, red). NT and HP are grouped to
low-risk lesions (LR) and TA and AC to high-risk lesions (HR). (B) The difference spectra
between the single annotations and NT are depicted below using the corresponding
colors. The standard error and its error propagation are shown in grey. The spectral
differences are not located at the maximum intensity of the Raman peaks in the average
spectra. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2

Sensitivity, specificity and accuracy for leave-one-patient-out cross -validation results
with and without outlier identification approaches. One Class Classification (OCC), Local
Outlier Factor (LOF) and Refinement of Training Data (RoTD) were applied on the training
data of carcinoma (AC), tubular adenoma (TA), hyperplastic polyp (HP) and normal tissue
(NT). AC and TA were grouped to high-risk lesions (HR) and HP and NT to low-risk lesions
(LR).

All 0occC LOF RoTD
ACvs. NT Sen. (%) 73 76 72 79
Spe. (%) 78 80 80 83
Acc. (%) 75 77 75 81
HR vs. LR Sen. (%) 74 72 73 79
Spe. (%) 66 66 69 74
Acc. (%) 71 70 72 77
HR vs. NT Sen. (%) 76 76 80 85
Spe. (%) 69 70 65 76
Acc. (%) 74 74 77 81
TA vs. NT Sen. (%) 71 70 75 76
Spe. (%) 62 65 62 75
Acc. (%) 67 67 69 76
TA vs. HP Sen. (%) 67 69 67 72
Spe. (%) 57 59 54 63
Acc. (%) 63 65 62 69

the leave-one-sample-out scheme for a majority vote over all classified
spectra of the same samples. Table 3 lists sensitivities, specificities and ac-
curacies of the leave-one-spectrum-out, leave-one-sample-out, leave-
one-patient-out and leave-1/3-patient-out cross-validation procedures.
Due to the spectral similarity within the same sample, the sensitivity,
specificity and accuracy of the leave-one-spectrum-out cross-validation
are significantly higher in comparison to the other cross-validation
schemes. The accuracies are close to 100% except for the high-risk vs.
low-risk lesions with >85%. The numbers of leave-one-sample-out
cross-validation are slightly better than for leave-one-patient-out cross-
validation with around 80% for all groups except TA vs. HP with around
70%, which follows the tendency of leave-one-patient-out cross-valida-
tion. A change from leave-one-patient-out to leave-1/3-patient-out
cross-validation shows a slight decrease in sensitivity, specificity and ac-
curacy for all groups except specificity for carcinoma vs. normal tissue.
Similar to our approach, Wood et al. [28] measured snap frozen sam-
ples with a fiber probe constructed by Day et al. [30] and analyzed the
data in the fingerprint region. They validated the classification model
with a leave-one-spectrum-out cross-validation procedure on a set of
177 patients (356 samples). NT vs. AC or adenoma was classified with
an accuracy of 88.5% and 88.3%, respectively. Furthermore, adenoma
was separated from HP with an accuracy of 78%. Raman fiber-optic in
vivo measurements on colon tissue were performed by Bergholt et al.
[29] in Singapore with a self-developed fiber probe. They investigated
in total 49 patients (121 samples) with high-risk lesions from 14

Table 3
Results for Leave-One-Spectrum-Out (LOSO), Leave-One-Sample-Out (LOSamO), Leave-
One-Patient-Out (LOPO) and Leave-1/3-Patient-Out (L1/3PO) cross-validation scheme.

LOSO LOSamO LOPO L1/3PO
ACvs.NT Sen. (%) 95 81 79 75
Spe. (%) 96 83 83 87
Acc. (%) 96 82 81 81
HR vs. LR Sen. (%) 82 80 79 73
Spe. (%) 88 77 74 72
Acc. (%) 85 79 77 73
HR vs. NT Sen. (%) 99 82 85 75
Spe. (%) 100 84 76 75
Acc. (%) 99 83 81 75
TA vs. NT Sen. (%) 99 78 76 75
Spe. (%) 100 80 75 70
Acc. (%) 99 79 76 72
TA vs. HP Sen. (%) 100 71 72 70
Spe. (%) 94 72 63 60
Acc. (%) 97 71 69 65
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patients (17 samples). High-risk lesions were separated from low-risk
lesion with an accuracy of 90.9%. Adenoma was separated from HP
with an accuracy of 81.8%.

A comparison of the results of Wood et al. [28] and our leave-one-
spectrum-out cross-validation results reveal significant higher accuracies
for our study. Since they measured one spectrum per sample for a greater
extent, their mode can also be compared with some restrictions to a leave-
one-sample-out cross-validation. Comparing all results and selecting
leave-one-sample-out cross-validation with RoTD for our study, Wood
[28] and Bergholt [29] achieved slightly higher sensitivities, specificities
and accuracies. However, these groups applied leave-one-spectrum-out
or leave-one-sample-out cross-validation. This does not avoid the bio-
chemical similarity of the samples, which originate from the same patient.
Like our observation, accuracy dropped for the differentiation between TA
and HP. Nevertheless, TA and HP are morphologically similar, which likely
leads to difficult spectral differentiation. The spectra measured by Wood
et al. [28] show a higher standard deviation and display only the finger-
print region. Bergholt et al. [29] include the CH-stretching region. The
spectra, which they measured, agree with the spectra observed in this
study, apart from the phenylalanine band just recognizable in our mean
spectra. For the difference spectra, we observed smaller spectral changes
than Bergholt et al.[29] in the fingerprint region and no spectral changes
in the CH-stretching region. The lower spectral differences and deviations
in accuracies could be the result from different confocal volumes and a not
especially optimized system for measurements of endoscopic biopsy sam-
ples. A dependence of the water content between malign and benign tis-
sue was not recognizable in the measured spectra.

One reason for the low accuracy is the presence of a mixture of tissue
types within a large sample volume, which is a restriction for fiber optical
measurements in general. In contrast confocal Raman microscopy of tis-
sue samples can be used to obtain pure spectra of single tissue compo-
nents. A better differentiation of spectra from Raman microscopic
measurements can be comprehended leading to higher sensitivities,
specificities and accuracies of the corresponding classification results
[18,40]. This questions the minimum fraction of cancer in the confocal
volume of the fiber probe, which is needed to detect cancer. To investi-
gate this issue, we simulated a five component system of mucosa and sur-
rounding tissue, including spectra from crypts, stroma, connective tissue,
muscle and cancer. The composition of the surrounding tissue was varied
and an integral spectrum of cancer and surrounding tissue was computed
and classified. The results are listed in Table 4 and Table S1. We found out
that the minimum fraction of cancerous tissue is 51%-62%. In an experi-
ment a lower SNR can hide small bands and therefore increases the min-
imum fraction for cancer detection. To ensure that no lesions are missed,
the sensitivity can be increased at the costs of specificity. This can be
comprehended by a receiver operating characteristic (ROC) curve (see
Fig. S4) and achieved by e.g. moving the hyper planes in a SVM.

In the present study, we investigated the applicability of a simple
compact commercially available system for diagnostics on samples
from colonoscopy. By comparison of the different cross-validation
schemes, it turned out that due to spectral similarities and non-confor-
mity to the clinical workflow the leave-one-spectrum-out cross-valida-
tion is not reasonable to be applied for the recognition of malignant

Table 4

Simulation of spectra from a high confocal volume and mixed tissue component. The min-
imum fraction of cancer was determined for the identification of the mixed component
spectrum as cancerous. The extended results are listed in Table S1.

Composition of additional tissue component (%) Min. fraction of cancer (%)

Crypts Stroma Con. tissue Muscle

100 0 0 0 59
50 50 0 0 62
45 45 10 0 59
90 0 5 5 54
80 0 10 10 51
40 40 10 10 55

tissue, since it does not reflect the clinical workflow. In the leave-one-
sample-out and leave-one-patient-out cross-validation schemes com-
bined with outlier identification (RoTD) high-risk and low-risk lesions
as well as adenocarcinoma and normal tissue can be differentiated
quite well. However, adenoma and hyperplastic polyps are barely sepa-
rable yet. For an improvement of the statistics, more measurements on
samples from further patients are needed. Furthermore, we introduced
three different outlier identification methods (LOF [33], OCC [37], RoTD
[32]) to identify inaccuracies within the data of the measured samples
and their labeling. They were applied to improve the training database
and by that the recognition of the tissues.

4. Conclusions

The differences in the Raman spectra between the tissue samples are
small. By taking the heterogeneity of the patients into account, it is ob-
vious that only a large patient cohort provides a suitable recognition and
validation. Hence, a proper data analysis has to be considered, as shown
in this study. Due to the biochemical similarity of samples from the
same patient, we recommend based on the results shown in Table 3 to
use the leave-one-patient-out cross-validation scheme with a sufficient
number of patients for validation. There, the classifier has to recognize
the spectral fingerprint of a new sample from a new patient for an auto-
matic detection of lesions and not a new spectrum from the same sam-
ple. The optimization of classification models by outlier detection can
help to avoid the misdiagnosis of single samples and systematic errors
in the measurement. Furthermore, such an approach improves the
training data base for classification. For pushing Raman endoscopic
fiber-optics towards routine clinical application, further efforts are re-
quired, especially by increasing the number of patients, since a statisti-
cally validation of the classifiers needs a large number of patients, as
pointed out previously by Beleites et al. [41]. In the next steps we will
improve the setup towards in-vivo measurements and increase the
number of patients significantly.
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