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ABSTRACT: The current gold standard for the diagnosis of bladder cancer
is cystoscopy, which is invasive and painful for patients. Therefore,
noninvasive urine cytology is usually used in the clinic as an adjunct to
cystoscopy; however, it suffers from low sensitivity. Here, a novel noninvasive,
label-free approach with high sensitivity for use with urine is presented.
Coherent anti-Stokes Raman scattering imaging of urine sediments was used
in the first step for fast preselection of urothelial cells, where high-grade
urothelial cancer cells are characterized by a large nucleus-to-cytoplasm ratio.
In the second step, Raman spectral imaging of urothelial cells was performed.
A supervised classifier was implemented to automatically differentiate normal
and cancerous urothelial cells with 100% accuracy. In addition, the Raman
spectra not only indicated the morphological changes that are identified by
cytology with hematoxylin and eosin staining but also provided molecular
resolution through the use of specific marker bands. The respective Raman marker bands directly show a decrease in the level of
glycogen and an increase in the levels of fatty acids in cancer cells as compared to controls. These results pave the way for
“spectral” cytology of urine using Raman microspectroscopy.

Bladder cancer is the ninth most common cancer in the
world, with around 429 000 new cases diagnosed and

150 000 deaths every year.1,2 The majority of bladder tumors
are urothelial carcinoma (UC). Usually, bladder cancer is
detected at an early stage (nonmuscle invasive, low grade)
when it can be treated easily.3 The current gold standard for
bladder cancer detection is cystoscopy, which is invasive and
uncomfortable for patients and has a utility that depends on the
experience and ability of the examiner.3 As bladder cancer is
likely to recur, patients with a history of UC often undergo
follow-up tests to monitor for recurrence for years after therapy.
As a result, bladder cancer is one of the most costly of cancer
diseases.4

Noninvasive diagnosis of UC remains challenging. The only
noninvasive diagnostic method used in clinical practice is urine
cytology, which is used as an adjunct for cystoscopy. The
specificity of cytology is higher than 90% and the sensitivity is
∼80% for high-grade UC, whereas the sensitivity is very low
(∼20−53%) in the case of low-grade UC.5,6 Several urine-based
tests have been developed over the last 2 decades, but none of
them is recommended in the European Association of Urology
guidelines for the diagnosis and treatment of bladder cancer.3

Raman microspectroscopy is a powerful method that has
been applied for the analysis of biological and biomedical
samples.7−13 For instance, invasive diagnosis of bladder cancer
has been reported using Raman spectroscopy.14−22 Recent
studies have also shown the potential of Raman micro-
spectroscopy to analyze and discriminate between normal and
cancer cells using bladder cell lines.14,23−25 Shapiro et al. were
the first group to apply Raman microspectroscopy to urine.
They demonstrated the feasibility of this method for the
analysis of urine even though the results and conclusions of
their study remain debatable.26 Their results demonstrated the
presence of a Raman peak near 1584 cm−1 only in high- and
low-grade tumors but not in normal urothelial cells. On the
basis of these findings, the authors found a high accuracy
association of this Raman peak and postulated that it is
characteristic for urothelial cancer cells.26

Here, we report a combination of Raman, coherent anti-
Stokes Raman scattering (CARS), and second harmonic
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generation (SHG) images of urine from patients with
pathologically confirmed high-grade UC and those without
UC. We found that the Raman band near 1584 cm−1 originated
from erythrocytes, suggesting that the previously reported
Raman spectra26 of UC in urine cells originate mostly from
blood cells, especially in the case of high-grade urothelial cancer
cells. With these results, Raman and CARS/SHG imaging of
normal and cancerous urothelial cells free from erythrocyte
contamination was performed to monitor the changes in the
biochemical status of urothelial cells as a result of cancer
progression. Furthermore, a supervised learning algorithm
based on random forest as a classifier was trained and used
to differentiate normal and cancer urothelial cells with 100%
accuracy using leave-one-patient-out cross-validation.

■ EXPERIMENTAL SECTION
Urine Sampling. Urine samples were collected (prior

TUR-B) from 10 patients diagnosed with high-grade UC and
from 10 patients with pathologically confirmed urocystitis but
without UC at the Department of Urology of the Ruhr-
University Bochum, Marien Hospital Herne, Germany. Institu-
tional review board approval (IRB 3674-10) and written
informed consent from all patients were obtained. Urine
samples were collected directly from patients. The preparation
of urine samples for spectroscopic measurements is described
in the Supporting Information and shown in Figure S1.
CARS and SHG Microscopic Imaging. CARS images

were acquired using a commercial setup (TCS SP5 II CARS;
Leica Microsystems, Heidelberg, Germany) consisting of a
picosecond pulsed laser (APE picoEmerald, Berlin, Germany)
that can generate and synchronize two collinearly aligned
beams to a confocal inverted microscope, as described in detail
previously.27 The pump and Stokes wavelengths were 810.5
and 1064 nm, respectively. Laser beams are focused in the
microscope using an HCX IRAPO L (25×/0.95W, Leica
Microsystems) water immersion objective. CARS and SHG
images were collected simultaneously at 2935 cm−1 with a pixel
dwell time of 180 μs and resolution of 500 nm.
Raman Spectral Imaging. Raman measurements of urine

cells were acquired using an alpha300 RA confocal Raman
microscope (WITec, Ulm, Germany) as indicated previ-
ously.28−30 The Raman excitation source is a frequency-
doubled Nd:YAG laser 532 nm (CrystaLaser, Reno, NV,
USA). The laser beam is coupled to a Zeiss microscope using a
wavelength-specific single-mode optical fiber. The laser beam is
collimated and then focused on the sample through a Nikon
NIR APO (60×/1.00 NA) water immersion objective. The
sample was fixed on a piezoelectrically driven microscope
scanning stage. The backscattered Raman light was collected
and finally detected by a back-illuminated deep-depletion
charge-coupled device camera, which can detect the Raman
signal. Raman spectral imaging was conducted utilizing a raster
scanning laser beam over cells to acquire full Raman spectra at a
speed of 0.5 s per pixel, with a pixel resolution of 500 nm.
Data Processing and Multivariate Analysis. To collect

the training data, hierarchical cluster analysis (HCA) was first
performed on the Raman spectral data from cells. Raman
hyperspectral results were exported to Matlab (The Math-
Works, Natick, MA, USA). In-house built scripts were
implemented for data preprocessing and HCA. All Raman
spectra without a C−H band at 2850−3000 cm−1 were treated
as background and deleted. To remove cosmic spikes, an
impulse noise filter was applied and the Raman spectra were

interpolated to a reference wavenumber scale. All Raman
spectra were baseline-corrected with a third-order polynomial.
Furthermore, all spectra were vector normalized. HCA was
performed on the regions of 400−1800 and 2800−3050 cm−1

using Ward’s clustering combined with Pearson’s correlation
distance. The resolution of hematoxylin and eosin (HE) images
was reduced from 0.14 to 0.5 μm/pixel to match the resolution
of the corresponding Raman images and converted to grayscale.
A suitable intensity threshold value was determined to generate
a two-color-channel image. In this two-color-channel image, a
certain color intensity threshold was set to separate the nucleus
from the cell based on HE staining. Values above this threshold
were considered to be the nucleus and denoted in blue. The
remaining cellular parts (cytoplasm) are denoted in red. This
image was then automatically registered with the HCA of the
Raman image. Colocalization between the two-color-channel
image and the HCA image was applied to determine the “best
matching clusters” for the nucleus and cytoplasm as illustrated
previously.27,31 This algorithm was applied on 61 normal cells
and 60 high-grade cancer urothelial cells and produced 161 937
and 375 203 Raman spectra from normal and high-grade cancer
urothelial cells, respectively. These spectra were used to train a
random forest classifier. Afterward, several random forest data
sets were trained and subsequently validated. The validation
was performed by means of leave-one-patient-out cross-
validation. This was achieved by leaving out every patient
once, training on the others, and validating with the one that
was left out. This procedure was repeated for every patient, and
the results were averaged, which means that every patient is in
the validation cohort once and in the training cohort N − 1
times but never in both at the same time.31

■ RESULTS AND DISCUSSION

Identification of Urothelial Cells in Urine Sediments.
Raman spectra of different cells in urine sediments, such as
normal and high-grade cancerous urothelial cells, squamous
cells, leukocytes, erythrocytes, and bacteria, were acquired, and
the results are displayed in Figure 1. Raman spectral imaging is
capable of differentiating these cells. For instance, a normal

Figure 1. Raman spectra and HE-stained images of different cells in
urine such as (a) normal and (b) cancerous urothelial cells, (c) a
squamous cell, (d) a leukocyte, (e) bacteria, and (f) an erythrocyte.
This urine sample was not filtered in order to measure Raman spectra
of different cell types in urine.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b01403
Anal. Chem. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01403/suppl_file/ac7b01403_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01403/suppl_file/ac7b01403_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.7b01403


urothelial cell (a) is characterized by a Raman band near 482
cm−1, which is absent in the spectrum of high-grade urothelial
cancer cells (b). Erythrocytes (f) have a strong heme band near
1585 cm−1, which is also absent in the spectrum of leukocytes
(d). Bacteria (e) can be distinguished from other cells by their
Raman doublet near 1494/1514 cm−1 and sharp bands near
2285 and 2922 cm−1. These spectral differences can be used to
differentiate cell types and identify urothelial cancer cells in
urine. However, it is not feasible to acquire Raman measure-
ments for all of these cells in each patient’s sample. This is
because Raman scattering is weak, which makes the time of
data acquisition long and thus the entire measurement will be
time-consuming. Therefore, we established the following
workflow to identify urothelial cells in urine.
Workflow for the Identification of Urothelial Cells in

Urine. Basically, the workflow involves a training stage
followed by a validation stage (Figure 2). The aim of the
training step was to first identify urothelial cells in urine and to
obtain representative spectra for the urothelial cellular
components, which can be used to train a supervised classifier.
CARS and SHG imaging techniques were used to acquire
images of urine to identify urothelial cells. Subsequently, the
identified cells were measured by Raman spectral imaging. The
spectral image was overlaid with its HE-stained counterpart to
perform colocalization analysis to obtain representative training
spectra for urothelial cells and their subcellular components.
A representative example of the different imaging results

from one patient’s urine is presented in detail. Figure S2
displays SHG (A) and CARS (B) images of a large area of urine
sediment (1 mm × 1 mm) from a patient diagnosed with high-
grade UC. These images were measured simultaneously within
a few minutes and used for the fast screening of urothelial cells.
Other approaches for fast cancer diagnosis by Raman
microscopy have been reported.9,11,13 For instance, a
combination of autofluorescence and Raman microscopy was
used.9,13 Here, cancerous urothelial cells were identified using
label-free CARS/SHG images in a similar manner as that by
pathologists using HE-stained images. The high-grade
urothelial cancer cells are characterized by a high nucleus-to-
cytoplasm ratio and a large distortion of their nuclear
morphology compared to normal cells.32 The same criteria
were used to identify high-grade urothelial cancer cells using

CARS/SHG images. Urothelial cancer cells were detected in all
samples measured by CARS/SHG imaging. Around 90% of
these cells were confirmed by a pathologist using the HE-
stained images of the same cells to be high-grade urothelial
cancer cells.
In Figure 3, the magnified SHG (panels A and F) and CARS

(panels B and G) images of normal and cancerous urothelial

cells are depicted. Nuclei are clearly visible in both the SHG
and CARS images. Raman spectral imaging of these selected
cells was performed subsequently, and integrated intensity
images in the C−H stretching region of the candidate normal
and high-grade cancerous urothelial cells are shown in panels C
and H, respectively. The nuclei of cells can be visualized
through an integration of the Raman intensity around the DNA
marker band (790 cm−1),33 as displayed in panels D and I. Cells
were HE-stained after the Raman measurements were
completed, and a pathologist annotated the HE-stained cells
shown in panels E and J as normal and high-grade cancerous
urothelial cells, respectively, thus confirming our preselection.
It is obvious that the Raman images (panels D and I) can

reproduce the same characterization of the cell nucleus in a
label-free manner as that obtained with the HE-stained images

Figure 2. Workflow for the training and validation stages of the random forest classifier.

Figure 3. Different imaging techniques applied to normal (A−E) and
high-grade cancerous (F−J) urothelial cells in urine sediments: (A, F)
SHG images, (B, G) CARS images, (C, D, H, I) integrated Raman
intensity of cells in the (C, H) 2800−3050 cm−1 and (D, I) in 785−
805 cm−1 regions, and (E, J) HE-stained images.
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(panels E and J). The nuclei of cells are also visible in the SHG
and CARS images. It has been reported that SHG can be used
to visualize collagen and myosin structures in cells.34 Myosin is
present in the nucleus and is involved in many nuclear
functions such as transcription processes.35 This may explain
why the nuclei were observed more clearly with SHG in
comparison with the CARS technique, which monitors the
protein distribution in cells at 2935 cm−1.36,37 Therefore, SHG
and CARS were used for a fast preselection of urothelial cells in
urine based on the morphological features of the cell and the
ratio of the nucleus to the cytoplasm. These results set the stage
for the automatic identification of urothelial cancer cells using
CARS/SHG imaging.
Colocalization. The Raman spectral images were overlaid

with their HE counterparts to perform colocalization analysis,
and an example of the colocalization procedure is shown in
detail in Figure 4.

This overlay is quantitatively determined by Pearson’s
correlation coefficient (PCC). Similar approaches have been
used to identify subcellular organelles by Raman and CARS
microscopy using fluorescence imaging as a reference.27,31 HE
staining was performed after Raman spectral imaging measure-
ments were recorded as depicted in Figure 4A. A two-color-
channel image (panel B) was created from the HE-stained
image to segment the cell into the nucleus (blue) and
cytoplasm (red). Colocalization analysis transfers the nucleus
and cytoplasm from the HE image into best matching clusters
in the HCA of the Raman image, as displayed in panel C, where
the nucleus and cytoplasm are shown in blue and red,
respectively. By superimposing these clusters with their
corresponding two color channels, the region of overlap is
displayed in yellow. The overlapping regions agree strongly, as
indicated by PCC values of 0.91 for the nucleus (panel D) and
0.75 for the cytoplasm (panel E). The spectra obtained from
the colocalization algorithm are used to train a classifier. The
classifier is trained independently with nucleus spectra,
cytoplasm spectra, or full-cell spectra.

Raman Spectral Differences between Normal and
Cancerous Urothelial Cells. The Raman mean spectra of the
normal and high-grade cancerous urothelial cells used to train
the classifier are shown in Figure 5. The Raman mean spectrum

of normal urothelial cells (spectrum a) displays Raman bands in
the C−H stretching region at 2933 and 2889 cm−1 and in the
fingerprint region at 1655 cm−1 (carbonyl stretching, amide I),
1456 cm−1 (CH2 bending deformation), 1344/1270 cm−1

(amide III), 1130 cm−1 (C−C skeletal stretching), 1096 cm−1

(symmetric PO2
− stretching), 1005 cm−1 (phenylalanine ring-

breathing), 941 cm−1 (C−C stretch backbone/glycogen), 861
cm−1 (Tyr/glycogen), and 482 cm−1 (glycogen).15,38−40 This
spectrum is also similar to the Raman spectrum of normal
urothelial cells reported by Shapiro et al.26 The Raman mean
spectrum of the high-grade urothelial cancer cells (Figure 5b) is
similar to that of normal cells (Figure 5a). However, the Raman
bands at 941, 861, and 482 cm−1 have almost disappeared in
the spectrum of the urothelial cancer cells. These results
indicate that these three Raman bands can be used as markers
to differentiate normal and high-grade cancerous urothelial
cells. Similar results were obtained from the Raman mean
spectra of the nucleus and cytoplasm (Figure S3) of normal and
high-grade cancerous urothelial cells used for to train the
classifiers.
Furthermore, the presented Raman spectrum of high-grade

urothelial cancer cells (Figure 5b) is significantly different
compared to that reported by Shapiro et al. characterized by a
strong Raman band near 1584 cm−1.26 Their Raman spectrum
resembles hemoglobin in erythrocytes,41 which is characterized
by a strong Raman band near 1585 cm−1, as shown in Figures
1F and S4. These spectra26,41 were acquired with 532 nm
excitation, where the hemoglobin of erythrocytes is under
resonance conditions.33 This leads to obtain the resonance
Raman spectra of the heme of hemoglobin being obtained,
which has very strong Raman bands compared to those of other
cellular or tissue components. All of these results taken together

Figure 4. Colocalization of the nucleus and cytoplasm of a urothelial
cell. (A) HE staining of a high-grade urothelial cancer cell. (B) Two-
color-channel image of the HE-stained cell showing the nucleus (blue)
and cytoplasm (red). (C) Best matching clusters from the HCA result
according to the colocalization with the two color channels. Overlaid
images of the nucleus and cytoplasm from the two color channels
(red) in panel B with their corresponding HCA clusters (green) in
panel C are displayed in panels D and E, respectively. Overlapping
regions are shown in yellow.

Figure 5. Raman mean spectra of (a) normal and (b) high-grade
cancerous urothelial cells used for to train the random forest classifier.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b01403
Anal. Chem. XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01403/suppl_file/ac7b01403_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01403/suppl_file/ac7b01403_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.7b01403


suggest that the reported Raman spectra of UC in the urine
cells of Shapiro et al. originate mostly from blood cells,
especially in the case of high-grade urothelial cancer cells.26

Thus, the differentiation between normal and cancerous
urothelial cells was mainly based on the presence or absence
of blood contamination. This means that Shapiro et al. merely
described the characteristic Raman spectrum for the detection
of hematuria, which is an established but not exclusive
symptom of UC.3 The presence of blood in urine occurs not
only due to bladder cancer but also occurs due to several other
diseases such as urinary tract infection, kidney infections, or a
bladder or kidney stone.42,43 Thus, the Raman band near 1585
cm−1 cannot be used as a marker for UC as it might fail to
distinguish between UC and the aforementioned conditions.
Therefore, the present study is the first to describe the
characteristic Raman spectrum of urothelial cancer cells. To
elucidate the underlying molecules within the cell using the
Raman bands, Raman difference spectra (normal − cancer)
between normal and cancerous urothelial cells were recorded
(Figure 6b). The Raman difference spectra reveal large spectral

changes near the 2952, 2908, 2875, 2854, 1667, 1580, 1448,
1382, 1344, 1307, 1268, 1126, 1090, 1050, 941, 866, and 482
cm−1 bands. Positive and negative bands in the difference
spectra mean higher contributions from normal and cancer
cells, respectively. Similar spectral changes were also detected in
the nucleus and cytoplasm (Figure S3). These results are in
agreement with the pathological grading of UC. This is because
it depends on a shift in the nuclear−cytoplasmic ratio and a
large distortion in the nuclear morphology, which imply that
there are large changes in the nucleus and cytoplasm.32

The difference spectrum of urothelial cells (Figure 6b) was
compared to the Raman spectra of pure compounds of
glycogen (a) and a fatty acid such as oleic acid (c).
Interestingly, all positive and negative bands in the difference
spectrum (except 1580 cm−1) overlap well with bands of pure
glycogen and fatty acid, respectively.
In addition, the negative band in the difference spectrum (b)

at 1580 cm−1 could be assigned to the pyrimidine ring of
nucleic acids.15,22 From the Raman band assignment, we can
conclude that the level of glycogen is significantly decreased in

high-grade cancerous urothelial cells (Figure S5), whereas that
of fatty and nucleic acids is increased compared to levels in
normal urothelial cells. This is a breakthrough in Raman image
analysis because the underlying metabolic changes are now
directly observed in the label-free Raman spectra. Glycogen is
known to be the main energy source detected in human cells.
The association of glycogen metabolism with cancer develop-
ment was recently indicated.44,45 Glycogen degradation
stimulates the synthesis of fatty acids, nucleotides, nucleic
acids, and aromatic amino acids.45 These biomolecules are the
building blocks for cell proliferation and cancer progres-
sion.44−46 Thus, it is expected that normal cells will have
glycogen in abundance, whereas there will be a deficit of
glycogen in cancer cells, as observed in the present study. Our
findings corroborate previous studies that reported a higher
level of glycogen in benign epithelial tissues, such as esophageal
tissues, whereas greater concentrations of nucleic acids were
found in neoplastic tissue.15,22

To confirm that glycogen is localized within normal
urothelial cells but not precipitated on the cell surface, we
performed confocal z-stack Raman imaging of the same cells
(Figure 7). Panel B(1−5) shows integrated Raman intensity

images around the 482 cm−1 band of normal urothelial cells.
Panel C displays the Raman spectra of cells measured in the z-
stack. All of these spectra contain the 482 cm−1 band, which is
assigned to glycogen. Thus, panel B(1−5) shows and proves
the confocal distribution of glycogen within normal cells.

Validation Stage. On the basis of the classifications
accomplished in the training stage, random forest classifiers
were trained to perform supervised classification and to identify
the nucleus and cytoplasm of both normal and high-grade
cancerous urothelial cells. Random forest is an attractive
classifier because it does not require feature selection before
training; it is effective in both training and validation, and it is
strong against overfitting.47 We have recently used random
forest to automatically identify subcellular organelles and to
annotate colon tissue types and the area of colon cancer using
Raman and CARS microscopy.27,31,41 Random forest classifiers

Figure 6. Comparison of the Raman difference spectrum (normal −
cancer) of urothelial cells (b) with the Raman spectra of pure
compounds of glycogen (a) and oleic acid (c).

Figure 7. Confocal z-stack Raman imaging of normal urothelial cells.
(A1−5, B1−5) Integrated Raman intensity images in the 2800−3050
cm−1 and 465−500 cm−1 regions of normal urothelial cells,
respectively. (C) Raman mean spectra of cells measured in the z-
stack. An HE-stained image is also shown.
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are validated here in a straightforward manner using leave-one-
patient-out cross-validation, where all spectra employed for the
training step were excluded from the validation step. The
differentiation between normal and cancerous urothelial cells in
urine sediments was achieved with high accuracy, as indicated
in Tables 1 and S1. For instance, when calculating the number

of patients correctly classified within the left-out patients, the
classifiers trained on the spectra of either full-cell or cytoplasm
produced an accuracy of 100%, which is higher than that
obtained when the classifier was trained with nucleus spectra
(90%).
The most informative wavenumber regarding the accuracy

was identified via feature selection of the random forest trained
on the spectra of the full cell. During training, every
wavenumber is permuted to check the change in the resulting
accuracy. The higher the mean drop in accuracy, the more
important the respective wavenumber is for distinguishing the
different classes. The 482 cm−1 wavenumber was associated
with the biggest drop in accuracy. These results are in
agreement with the Raman difference spectrum (normal −
cancer) that revealed large changes (Figure 6b) including a
strong positive band at 482 cm−1, which originates from
glycogen. This band is present only in the spectra of normal
urothelial cells and is absent in the spectra of high-grade
urothelial cancer cells. It is also absent in other urine cells
(Figure 1). Thus, the 482 cm−1 band can be used as a marker to
differentiate normal and high-grade cancerous urothelial cells.
Interestingly, this band was also observed in the Raman
spectrum of normal bladder tissue22 and as a positive band in
the Raman difference spectrum (normal − cancer) of
esophagus tissues, implying the presence of a high level of
glycogen in normal tissues.15

Raman spectroscopy has been used for the diagnosis of
bladder cancer for more than a decade. For instance, it has been
used during cystoscopy to classify bladder urothelial tissues
with sensitivities and specificities of 79−89%.16−19 Raman
spectroscopy has also been applied to differentiate different
pathological grades of bladder tissue taken from patients with
sensitivities and specificities of 92−98%.20−22 In the present
study, we have established a noninvasive diagnostic tool using
an easily accessible liquid biopsy taken from the patient’s urine,
which is in contrast to the aforementioned invasive methods
based on tissue analysis.16−22 By using Raman microspectro-
scopy, cancerous urothelial cells were identified with a very high
accuracy of 100%. There are several tests based on urine, such
as NMP22 and FISH UroVysion, in addition to urine cytology.
These tests are approved by the U.S. Food and Drug
Administration.48−52 These tests have a low sensitivity of
only 28−45%, but they have a high specificity of 97−98.5%, as
shown in the prospective Uroscreen studies.51−53 The approach
presented here seems superior to the conventionally used
biomarkers.
Principally, there are two scenarios in which the results of the

present study might aid clinicians in daily practice. Raman
microspectroscopy could be used in the detection and regular

follow-up of UC instead of using painful and costly cystoscopy.
In addition, with the promising sensitivity and specificity for
high-grade UC found in our samples, Raman microspectro-
scopy could be especially helpful in the early detection or
verification of high-grade upper tract UC.

■ CONCLUSIONS
Raman spectral imaging, SHG, CARS, HCA, and a random
forest classifier were used for the label-free identification of
urothelial cells in urine sediments. Differentiation between
normal and high-grade cancerous urothelial cells was achieved
automatically based on their Raman spectra with 100% accuracy
using leave-one-patient-out cross-validation. A Raman marker
band near 482 cm−1, which originates from glycogen, can be
used to differentiate normal and high-grade cancerous
urothelial cells. The level of glycogen is lower in urothelial
cancerous cells compared to normal urothelial cells, whereas
the level of fatty and nucleic acids is increased upon the
progression of urothelial carcinoma. Thus, the vibrational
fingerprint provided by the Raman spectra is now assigned in a
clear-cut manner to metabolic changes within the cancer cells.
Furthermore, this study shows the potential of Raman
microspectroscopy as a noninvasive method for the diagnosis
of high-grade UC in urine with high accuracy based on
metabolic changes in urothelial cells. We also demonstrate that
CARS/SHG microscopy has a prospective use as a fast label-
free imaging tool for prescreening large amounts of cells in
cytopathological samples. In the future, we aim to identify low-
grade urothelial cancerous cells in the urine of patients not only
using Raman spectra but also using cell morphology from
CARS/SHG imaging.
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Table 1. Classification of Urothelial Cells in Urine

classification nucleus cytoplasm full-cell

sensitivity (%) 90 100 100
specificity (%) 90 100 100
accuracy (%) 90 100 100
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