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Hierarchical variants of so-called deep
convolutional neural networks (DCNNs)
have facilitated breakthrough results
for numerous pattern recognition
tasks in recent years. We assess the
potential of these novel whole-image
classifiers for Raman-microscopy-
based cytopathology. Conceptually,
DCNNs facilitate a flexible combination of spectral and spatial information for
classifying cellular images as healthy or cancer-affected cells. As we demon-
strate, this conceptual advantage translates into practice, where DCNNs exceed
the accuracy of both conventional classifiers based on pixel spectra as well as
classifiers based on morphological features extracted from Raman microscopic
images. Remarkably, accuracies exceeding those of all previously proposed
classifiers are obtained while using only a small fraction of the spectral infor-
mation provided by the dataset. Overall, our results indicate a high potential
for DCNNs in medical applications of not just Raman, but also infrared
microscopy.
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1 | INTRODUCTION

Raman microscopy has been utilized extensively for diag-
nostic purposes in recent years. With applications ranging
from cytopathology of different types of cancer [1, 2] to
resolving tumors within their tissue context [3–5], these
studies have relied on analyzing image spectra pixel-by-
pixel, typically using multidimensional chemometric
approaches to classify or decompose individual Raman
spectra. Some recent approaches have deviated from this
approach of considering one pixel spectrum at a time by

analyzing the spatial context contained in Raman micro-
scopic images in a quantitative manner [6]. The authors of
the present contribution demonstrated recently that the mor-
phological differences between normal and cancerous
urothelial cells can be captured using image features that
have been commonly used for location studies of fluores-
cence microscopic images [7].

In recent years, hierarchical variants of deep convolu-
tional neural networks (DCNNs) facilitated breakthrough
results in numerous pattern recognition tasks. The rise of
DCNNs has been triggered by the seminal work of
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Krizhevsky et al. [8], which has no less than revolutionized
the fields of machine learning and pattern recognition [9],
including in particular breakthroughs in medical imaging
and in diagnostics [10]. Obviously, this development prom-
ises impact on the analysis of Raman microscopic images
and its applications, which constitutes the subject of our
present contribution.

We demonstrate the use of DCNNs for Raman micro-
scopic image analysis in the context of bladder cancer cyto-
pathology, where cell material is obtained noninvasively
from the sediment of urine samples. Urothelial cells from the
sediment can be classified into normal and cancer cells. As
has been suggested previously, such noninvasive approaches
promise to reduce the need for urethrocystoscopy, which is
the currently most accurate approach, yet suffering from its
inherent invasiveness and high costs. The case has been
made that noninvasive tests are a concern particularly
relevant for bladder cancer due to the high rate of recidivat-
ing and the resulting need for frequent testing recurrence
within short intervals. Spectral cytopathology has been intro-
duced as a promising approach [11] in the context of other
cancer entities. Subsequent work clearly demonstrated the
potential of spectral cytopathology in the context of urine
cytopathology [12].

1.1 | Raman-microscopy-based cell identification

It is well established that the collected Raman spectra of a
specific microscopic pixel are highly representative for the
biochemical status of the sample at the respective location.
Numerous studies have demonstrated that image spectra can
distinguish different cell types [7, 13–15], identify subcellu-
lar compartments [16, 17], or even resolve the distribution
and metabolization of drugs within cells [18]. In these stud-
ies, numerous chemometric approaches have been utilized,
ranging from different clustering approaches to various
flavors of supervised classifiers [17, 19–21] as well as
matrix factorization approaches [22]. In some cases, image
spectra are classified on a pixel-by-pixel manner [17], while
other studies rely on the analysis of either average spectra
[23–29] or individual spectra that integratively represent a
complete cell or region due to experimental setup [13, 19].
By Krauß et al. [7], it has been demonstrated that majority
votes over classification outcome of individual pixel spectra
within an image facilitate more accurate classification com-
pared to approaches based on average spectra of Raman
microscopic images.

The gold standard in such cytopathology studies usually
is the visual identification of cancerous urothelial cells by a
human expert in hematoxylin and eosin (HE)-stained
images. In other words, cancer cells can be identified by
morphological and textural features contained in the under-
lying imaging data, rather than by features of Raman micro-
scopic image spectra which immediately reflect biochemical
alterations at the respective pixel location. It is commonly

accepted across multiple forms of cancer that cells undergo
morphological alterations in particular within their nuclei
[30]. In the case of bladder cancer, NMP22 as a nuclear-
matrix protein is one of the few approved urine biomarkers
for bladder cancer [31]. NMP22 is a major constituent of the
nuclear matrix, providing evidence that morphological alter-
ations in the nuclei of cancer cells can be linked to molecular
alterations. This is in line with the findings from ref. [7] that
morpho-textural information obtained from only 3 wavenum-
bers in Raman microscopic images is sufficient to recognize
cancer cells from urine sediment with very high accuracy.

The recognition of cancer cells in ref. [7] is based on a
well-established approach to extract morphological and tex-
tural features from the intensity-image obtained for each of
the 3 wavenumbers utilized for this previous study. Remark-
ably, this approach yields accurate classifiers while ignoring
most of the spectral information contained in the Raman
microscopic image spectra. The current state-of-the-art in
Raman-microscopy-based cytopathology naturally raises the
quest for classifiers that can take into account both morpho-
textural information and the spectral information contained
in Raman spectra. In this contribution, we assess the poten-
tial of deep convolutional neural networks to take this role.

2 | FROM CONVENTIONAL TO DCNNS

Artificial neural networks have been introduced in the early
days of artificial intelligence research, and have been one of
the predominant approaches in machine learning since.
In their conventional form, neural networks have also been
largely popular for classifying Raman and also infrared spec-
tra [32–34], in particular when dealing with pixel spectra
from corresponding microscopic images [35]. In these
studies, conventional neural network classifiers utilize the
biochemical status represented by an individual Raman spec-
trum, but do not take into account morphology.

In the following paragraphs, we provide a brief and very
basic introduction to artificial neural networks. For a more
thorough treatment of the topic, we refer to text books such
as the excellent introduction by Goodfellow and Bengio
[36]. Practitioners may find a suitable starting point in the
book by Michael Nielsen [37], which introduces neural net-
works in a hands-on fashion accompanied by a highly
descriptive and accessible presentation of the theoretical
foundations.

2.1 | Basic terminology

We consider neural networks for binary classification tasks,
where a n-dimensional input vector x = (x1, …, xn) is classi-
fied into 1 out of 2 classes. In other words, the neural net-
work computes a function c(x), where c(x) = 1 or c(x) = 2
indicates that x is assigned to class 1 or 2, respectively. In
conventional spectral classifiers, x may represent a Raman
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spectrum where x1, …, xn indicate the intensities at different
wavenumbers. Classes c(x) = 1 or c(x) = 2 may indicate
healthy or disease, respectively, as the status of the sample.

In the most simple case, a neural network comprises
2 layers, as shown in Figure 1. A: Each input component xi
is represented by 1 vertex in the input layer L1, while the
2 output classes are represented by vertices y1 and y2 in out-
put layer L2. Each output vertex yj sums up the inputs xi
scaled by a weight of wi, j, so that the activation at output
neuron y1 is now computed through

a yj
� �

=w1, jx1 +w2, jx2 +w3, jx3 + bj,

where bj is a bias value required for technical reasons.
The classification outcome can be obtained from identifying
which of the 2 activations a(y1) or a(y2) is maximal.

The weights wi, j and bj of a neural network are usually
obtained from training data, which is a set data points with a
specified class label. Training the neural network essentially
translates to adjusting the parameters so that the classifica-
tion error on the given training data will be minimized. This
is famously accomplished by the backpropagation algorithm
[38].

2.2 | Multilayered neural networks

Figure 1B illustrates a typical multilayered neural network
consisting of several layers of vertices. As in the 2-layered
case, each vertex integrates the incoming edges by multiply-
ing the signal incoming along an edge with a weight associ-
ated with the edge. The integrated incoming weighted
signals are passed through a transfer function on to the next
vertex in the network. The first layer L1 again constitutes the
input layer, and the last layer L4 is the output layer that
determines the classification result. Hidden layers such as L2

may involve a varying number of vertices. In conventional
neural networks, vertices between consecutive layers are
typically fully connected.

2.3 | Hierarchical DCNNs

Compared to conventional neural networks, the hierarchical
architecture displayed in Figure 2A are taylored toward
imaging data. In fact, a complete image with an arbitrary
number of spectral channels is taken as input, rather than a
single spectrum as in a conventional neural network. Specifi-
cally, morphology is taken into account by hierarchically
merging information from neighboring pixel spectra. At the
first hidden layer L2, information is merged from the imme-
diate pixel neighborhood. Layer L3 further integrates infor-
mation from a broader neighborhood by merging the areas
represented in layer L2. In this example, the spatial informa-
tion in the tensors in level L3 is flattened into a single feature
vector in layer L3

0
. The following layers L4 to output layer

L6 represent conventional convolutional layers. In L6, each
of the 2 vertices represents 1 class to classify cells into either
healthy or cancerous. Moreover, Figure 2B indicates the
architecture of our neural network MNi introduced in detail
below. It shows how more spectral information can be
included in the neural network: the input layer L1 can be eas-
ily extended to collect information from more than just 2 of
the spectral bands. The network is thus capable of integrat-
ing spatial information as well as spectral information.

Including more spectral as well as more spatial informa-
tion in a DCNN comes at the cost of increasing the number
of edges in the resulting network. In other words, the num-
ber of parameters to be optimized during training will
increase. Technically, large numbers of parameters are of
limited concern, as current implementations of DCNNs can
deal with neural networks with tens of millions or more
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FIGURE 1 Conventional convolutional neural networks. Panel A indicates a minimal neural network with 3-dimensional input and 2 output classes. Panel B
displays the topology of typical conventional convolutional neural network with 2 hidden layers
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parameters. The main technical limitation in many cases is
graphics hardware memory, which needs to fit the complete
network topology along with a certain fraction of the train-
ing data into graphics memory. More importantly, however,
large numbers of parameters constitute a challenge in terms
of the neural networks obtained after training. If networks
with many parameters are trained on too few or too homoge-
neous training data, they tend to exhibit either poor classifi-
cation accuracy or strong overfitting toward the training
data [41].

This general challenge in fact sets the frame of our con-
tribution. We address the question of which DCNN topolo-
gies can be combined with the training data that are
commonly available in spectral cytopathological studies, and
which training conditions will lead to robust cell classifiers.
Specifically, different topologies deal with trade-offs
between the amount of spectral vs spatial information, and
the depth of network vs the amount of data available for
training. We investigate both training DCNNs from scratch
using cytopathology data as well as utilizing pretrained net-
works. We further investigate feature extraction for control-
ling the amount of spectral information used for
classification by the means of pretrained networks. Further-
more, so-called transfer learning [42, 43] of partially pre-
trained networks can be employed. Both approaches, relying
on pretrained networks and using transfer learning, utilize

DCNNs that have been trained on large image datasets and
are readily available, for example, the well known AlexNet
[8] based on the ImageNet database [44] with several million
pictures from thousands of classes. Even though the images
underlying the ImageNet dataset display everyday objects
rather than cytopathological data, the AlexNet DCNN pro-
duces low-level features that are potentially useful and dis-
criminative for cytopathological images.

3 | MATERIALS AND METHODS

3.1 | Wet lab

In this study we have reanalyzed data from a recent study
[7, 15]. For the sake of completeness, we briefly describe
the previously described sample preparation and image
acquisition [7, 15].

3.1.1 | Urine sampling

This study was conducted within the framework of the Pro-
tein research Unit Ruhr at the Ruhr-University Bochum,
Germany. Prior to human urine sampling, institutional
review board approval (IRB 3674-10) and written informed
consent from all patients has been obtained. Urine samples
were collected at Marienhospital Herne, Germany, from
10 patients diagnosed with high-grade urothelial bladder
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FIGURE 2 Conventional vs hierarchical deep convolutional neural networks. Panel A displays a reduced version of the 6-layered MNi network. Input layer
L1 takes i = 2 wavenumbers of all pixel spectra of a Raman spectral image as input. (The assignment of the selected wavenumbers can be found in Table 3.)
Consecutive layers reduce spatial resolution through hierarchically connecting subregions of the image as displayed in panel B. With increasing layers,
information is carried through deeper tensors until a 1-dimensional representation is achieved in layer L03. Layers L

0
3 through L6 are fully connected as in a

conventional neural network. Spatial dimension and depth have been reduced for illustrative reasons; the actual dimensions implemented in networks MNi are
shown in Table 1
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cancer and from 10 more patients with pathologically con-
firmed urocystitis but without cancer. Collected urine sam-
ples were spun at 3700 rpm (10 minutes, 10�C). The
supernatant urine was discarded and followed by suspension
and fixation of the precipitated pellets of urine cells using
1 mL of 4% formaldehyde solution (Roti-Histofix, Carl Roth
GmbH, Karlsruhe, Germany) and stored at 4�C. In case of
haematuria, urine cell solution was filtered using a Millipore
nylon-net filter of 11 μm pore size (Merck Chemicals
GmbH, Darmstadt, Germany) and washed with phosphate-
buffered saline (PBS, Life Technologies, Darmstadt,
Germany), in order to remove blood cells, bacteria, yeast
and other coloring contaminants.

Calcium fluoride (CaF2) slides (Korth Kristalle, Kiel,
Germany) were used as cell substrate for spectroscopic mea-
surements. CaF2 slides were coated with 0.01% (wt/vol)
poly-L-Lysine (Sigma-Aldrich GmbH, Munich, Germany)
in order to facilitate the attachment of cells [45]. An amount
of 100 μL of urine cell solution was added to a cytofunnel
assembly (Shandon, ThermoFisher GmbH, Dreieich, Ger-
many) which contains a CaF2 slide. The cytofunnel assem-
bly was spun using cytospin centrifuge (Cytospin
4, ThermoFisher GmbH) at 1500 rpm for 20 minutes. Next,
the CaF2 slide carrying a spot of adhered urine cells was
removed from the assembly and subsequently immersed in
PBS buffer to proceed with spectroscopic measurements.

3.1.2 | Spectroscopy

A confocal Raman microscope (alpha300 AR, WITec, Ulm,
Germany) was implemented for Raman measurements of
urine cells, as described previously [18, 25]. Raman excita-
tion source is a frequency-doubled Nd:YAG laser 532 nm
(Crystal laser, Reno, Nevada) with the output power of
approximately 40 mW. The excitation laser beam is directed
into a Zeiss microscope by a wavelength-specific single-
mode optical fiber, which is followed by collimation of the
laser beam and focused on the sample by a Nikon NIR APO
(×60/1.00 NA, Nikon, Düsseldorf, Germany) water immer-
sion objective. The urine cell slide is fixed on a piezoelectri-
cally driven microscope scanning stage. The collected
Raman-scattered light is directed to a back-illuminated deep-
depletion charge-coupled device camera that is operated at
−60�C, which can detect the Raman signal. In this study,
Raman imaging is conducted using a raster scanning laser
beam over cells, in order to acquire the full Raman spectra at

speed of 0.5 seconds per pixel and a pixel resolution of
500 nm. From the 20 patients 60 high-grade cancer urothe-
lial cells and 61 noncancerous cells were selected, which
resulted in 375 203 and 161 937 Raman spectra from can-
cerous and noncancerous cells, respectively. The images in
this dataset consist of 4439 pixel spectra on average.

3.1.3 | Staining

The staining of cells with HE was conducted after Raman
measurements. The cells were fixed via spraying of a com-
mercially fixative solution Merkofix (Merck KGaA, Darm-
stadt, Germany) that was left for 10 minutes to dry. Next,
the cell slide was immersed in Haris hematoxylin solution
(Merck KGaA) for 1 minute and subsequently washed in
water stream for 1 minute. Afterward, cells were immersed
in eosin Y (0.5% alcoholic, Merck KGaA) for 1 minute and
then washed by a water stream for 1 minute. The cell slide
was immersed subsequently in multiple washing solvents
(15 seconds each): ethanol (96%), ethanol (100%) and Xylol
(100%) (Sigma-Aldrich GmbH, Munich, Germany). Lastly,
a liquid cover glass (Merkoglass, Merck KGaA) was added
on the cell slide and then covered with a glass coverslip
(Servoprax GmbH, Wesel, Germany) and left overnight to
dry. For imaging of cells stained with HE, a Nikon upright
microscope (Eclipse Ni-U, Düsseldorf, Germany) was
employed. The microscopic imaging was conducted using a
Nikon Plan APO (×60/1.4 NA, Nikon) oil immersion objec-
tive. All collected images were sent for cytopathologic
annotation.

3.2 | Data analysis

A complete sample consists of thousands of cells on a slide.
From each sample, a small number of cells relevant for clas-
sification is selected visually. These selected cells are first
measured by Raman microscopy and then stained with HE
(see section 3.1.3). A pathologist characterizes these stained
cells as cancer or normal urothelial cells.

3.2.1 | Spectral preprocessing

Raman hyperspectral image data were exported to Matlab
2017b (The MathWorks, Natick, Massachusetts) and prepro-
cessed using in-house Matlab scripts. All Raman spectra
where the C-H band at 2850 to 3000 cm−1 was absent were
treated as background and erased. To remove cosmic spikes,
a pulse noise filter was used and the Raman spectra were

TABLE 1 Metaparameters of the MNi network architectures

MNi

Layer L1 L2 L3 L3
0 L4 L5 L6

Dimension 48 × 48 × i 21 × 21 × 32 17 × 17 × 16 1 × 4624 1 × 256 1 × 256 1 × 2

Transfer function (input) ReLU ReLU (linear) ReLU ReLU Softmax

Kernel 7 × 7 5 × 5 (flatten) Inner product Inner product Softmax

Stride 2 1

Type Convolution Convolution Flatten Inner product dropout Inner product dropout Output
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interpolated to a reference wavenumber scale. In addition,
all spectra have been vector normalized. We have carried out
the classification on spectra without baseline correction, as
we had previously shown that the baseline correction (with a
third-order polynomial [46]) had only a very small influence
on the classification results [7].

3.2.2 | Spectral band selection

The basis for training our morphological classifiers is
formed by the identification of individual Raman wavenum-
bers that will be most informative toward distinguishing can-
cer cells from healthy cells. For this kind of feature selection
problem numerous approaches have been proposed [47, 48].
Here, it will be particularly relevant to identify a small num-
ber of wavenumbers which on the one hand are highly dis-
tinctive between normal and cancer cells, while on the other
hand should also be uncorrelated. A well-established
approach to achieve this is the max-relevance min-redun-
dancy (MRMR) algorithm [49], which optimizes informa-
tion theoretic measures in order to identify features that will
be informative to distinguish different classes. A crucial
property of this approach is the identification of spectral
bands that tend to carry uncorrelated information, so that the
morphology for each selected band can be expected to carry
different and thus additional information for morphological
feature-based classification. We followed the workflow from
[7] to select k = 1 to k = 100 many wavenumbers. For each
k, a DCNN topology taking input images with k channels in
the input layer L1 was established.

3.2.3 | Deep learning

We derived 3 different approaches to use DCNNs from the
AlexNet [8] topology. We used the AlexNet topology as
implemented in caffe [50], which also allows to integrate
the parameters obtained in [8] from training the network on
the ImageNet dataset. Additionally, we established a new
topology different from the AlexNet pattern.

Specifically, we assess the following set of DCNN-based
classifiers:

Feature extraction

We utilized the pretrained AlexNet [8] as a feature extractor.
To this end, we reduced each of the Raman images I1, …, IN
to 3 wavenumbers using feature selection. Interpreting the
resulting images as RGB images allows to apply the network
from ref. [8] along with all parameters obtained on the
ImageNet dataset to each image Ij in the training dataset.

We considered the tensor T(Ij) resulting from the output
layer L7 as a feature representing each image I. We then
trained a support vector machine (SVM) on the tensors T
(I1), …, T(IN), with each Ij labeled as displaying a cancer or
a normal cell.

Transfer learning

As a second strategy, we applied so called transfer learning.
To obtain network transfer learning (TL), we took the Alex-
Net pretrained on the ImageNet dataset as a starting point
and ran further training iterations on the cytopathology data
set I1, …, IN reduced to 3 channels as in network feature
extraction (FE). During this transfer learning step, we fixed
the layers L1, …, L4 and allowed only the parameters of the
last 3 layers (a fully connected, softmax and classification
layer) to be further optimized.

AlexNet topology

Our third strategy was to train the AlexNet from scratch on
the cytopathology dataset I1, …, IN reduced to 3 channels.
To obtain network AlexNet topology (AN), we did not use
the ImageNet parameters at all, but started training the net-
work from random initialization.

Minimal net

Due to its origins in photographic image recognition, the
AlexNet is limited to utilizing 3 wavenumbers only. We
devised a minimal topology with i = 1, …, 30 spectral
bands in the input layer and including 6 hidden layers. The
topology of minimal net (MNi) is displayed in Figure 2.
Varying the number i of spectral bands allows to investigate
the impact of including different amounts of spectral infor-
mation for classification which can be seen in Figure 4.

These methods involve a number of metaparameters
where Table 2 shows the values we used.

As a reference to compare the classifiers FE, TL and AN
to conventional approaches, we took into account 2 classi-
fiers previously established:

Spatial bagging

The classifier established in ref. [15] implements a conven-
tional random forest [51] classifier that categorizes individ-
ual pixel spectra, combined with spatial bagging, where a
majority vote over the classification outcomes of individual
spectra within a complete spectral image leads to assigning
the cancer vs normal to a cell [7].

Conventional morphology

As a purely morpho-textural classifier, we utilized the classi-
fier proposed in ref. [7] which computes the morphotextural
features proposed in ref. [52] and classified images based on
these features using a conventional Random Forest
classifier.

TABLE 2 Hyperparameters used for training the 3 different kinds of
DCNNs (transfer learning, AlexNet and minimal net)

TL AN MN8

Maximum epochs 65 70 90

Mini-batch size 10 5 6

Initial learn rate (LR) 0.0001 0.0001 0.0002
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3.3 | Implementation

The DCNNs FE, TL and AN were implemented in Matlab
2017b using the Neural Network toolbox. The networks
MNi were implemented in Python 2.7 using the Keras 2.0.9
and TensorFlow 1.4.0 deep learning frameworks. Preproces-
sing of Raman spectra was based on implementations
described previously [7]. Experiments were run on a server
with 20 CPUs and 4 Nvidia GeForce GTX 1080 Ti graphics
cards running Ubuntu 16.04.

3.3.1 | Validation and testing

Training neural networks involves 2 different stages at
which the dataset needs to be divided into a training and a
validation set. The first stage precedes training, where part
of the dataset is withheld for validation after the training of
the classifier is completed. The second stage occurs repeat-
edly during training, where in each iteration of the training,
a gradient needs to be computed on the training set, and the
effect of adjusting the parameters in the network by follow-
ing the gradient is assessed on the withheld second stage
validation set.

In both levels, we implemented withholding the valida-
tion set on a per patient basis, where 2 patients (1 healthy
and 1 affected by cancer) were randomly selected. For every
round of cross-validation, all cells and samples associated
with these 2 patients were held back for testing, and the
remaining patients' cells were used for training as previously
suggested and discussed [17]. Dividing training set from val-
idation set on the patient level as the highest hierarchical
level possible follows the standards established in ref. [53]
for reliable validation of the robustness of classifiers.

Dividing the validation set at the patient level provides a
further advantage already discussed in a previous contribu-
tion [7]. The classification of an individual cell can be inter-
preted as a vote, so that we can classify an individual patient
through majority vote over all cells associated with that
patient. If, for example, 7 out of 12 cells from 1 patient are
classified as cancerous, the whole patient is put into this
category. This allows to calculate a second, patient based,
accuracy that measures correctly diagnosed patients.

4 | RESULTS AND DISCUSSION

The wavenumbers identified by the MRMR feature selection
algorithm as being the most important ones are shown in
Table 3 together with their chemical explanation. While the
minimal net classifier (MNx) is able to handle any number of
channels, the other DCNNs studied here are limited to a
maximum of 3 wavenumbers, in this case 482, 2831 and
1598 cm−1 being the 3 most discriminative ones as previ-
ously described [7, 15].

Table 4 shows the accuracies we achieved according to
per-patient cross validation with the deep learning methods
described in section 3.2.3. Table 4 also compares accuracies
with the results on the same dataset from our previous publi-
cations [7, 15] using conventional classifiers. As the dataset
gets balanced, an accuracy of, for example, 0.925 per cell
means, that 111 of 120 cell images were correctly classified.
This results in an accuracy of 1 based on patients, as for
every patient the majority decision is made over all cells of
this patient as described in section 3.3.1. In general, one may
consider to lower the threshold from 50% of the cells to, for
example, at least one cancerous cell, which might be a more
appropriate diagnostic strategy in the clinical practice.
However, in our setting it did not affect results in any signif-
icant manner.

Table 4 shows that both the pretrained FE and the TL
classifier nearly match the accuracy of the previously pro-
posed spectral classifier [15]. Remarkably, the MN8
achieves significantly better accuracy than any conventional

TABLE 3 List of the 8 most discriminative wavenumbers selected by the
MRMR algorithm for training DCNNs, including their chemical explanation
[39, 40]

Wavenumber Chemical explanation

482 Glycogen, skeletal modes, in-plane bending (CCC)

533 Glycogen, skeletal modes, (CCC) and (CCO) in-plane,
bending, glycosidic linkage, disulfide bridge of cystine

839 Glycogen, (COC) deformation, polysaccharide, structure

1438 CH2 bending deformation, CH2, CH3 scissoring of lipids

1598 Carbonyl stretching, amide I, C N, NH2, adenine

1672 Carbonyl stretching, amide I

2831 C H stretching

3057 N H amide vibration, C2c-H2 Aromatic stretching

TABLE 4 Overview of accuracies with different machine learning
techniques on the same urothelial cell dataset

Stained Raman # Channels

Spatial bagging (SB) [15]

Per cell / 0.96 755

Per patient / 1 755

Conventional morphology (CM) [7]

Per cell 0.84 0.89 3

Per patient 0.9 1 3

FE

Per cell 0.86 0.93 3

Per patient 1 1 3

TL

Per cell 0.87 0.93 3

Per patient 1 1 3

AN

Per cell 0.78 0.88 3

Per patient 0.9 0.95 3

Minimal net (MN8)

Per cell / 0.99 8

Per patient / 1 8

The last column indicates how many wavenumbers were used for classification.
All accuracies were calculated through cross validation at patient level as both
per-cell and per-patient accuracies. Results for classifiers SB and CM have been
obtained from previous work [7, 15] and shown for comparison.
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classifier while involving only 8 out of the 755 wavenumbers
of the dataset. In other words, less than 2% of the spectral
information is required to exceed the accuracy accomplished
through the conventional spatial bagging (SB) classifier
which requires the complete spectral information.

The DCNNs also exceed the accuracy obtained from the
conventional morphological (CM) classifier, which uses the
identical dataset reduced to the same 3 wavenumbers rather
than the complete Raman spectrum. Two factors may con-
tribute to the improved accuracy of DCNNs over conven-
tional morphological classifiers. First, the features provided
through the DCNN-derived tensor utilized by the FE classi-
fier may represent morphological information more suitable
toward classification. Second and more importantly, the
topology of the DCNNs involves spectral classification in
the sense that features from different bands of the spectrum
are interlinked by the topology of the DCNN. Conversely,
the conventional morphological features used by classifier
CM are computed within isolated bands of the spectrum.

The 2 approaches FE and TL take into account the train-
ing parameters from the network trained on the noncyto-
pathological ImageNet dataset. Training from scratch purely
relying on the cytopathology data in the AN, on the other
hand, reduces the accuracy (see Table 4) and manifests in a
noisier and lengthier learning process (see Figure 3).

Another practically relevant aspect to be observed are
significant differences in running time. Transfer learning for
classifier TL on the full dataset requires less than 1 minute
of computing time, while training the random forest of clas-
sifier SB involves more than 8 hours on the same machine.
Classifying all 121 images with either of the DCNNs
requires roughly half a second compared to 45 seconds for
classifier SB. In general, DCNNs require less computing
time during both training and classification in practice. This
advantage is certainly largely due to the highly optimized
graphics hardware implementations that are available for
DCNNs.

5 | CONCLUSIONS

We could demonstrate that DCNNs facilitate the reliable iden-
tification of cancerous cells in a Raman-microscopy-based
cytopathology study and exceed the accuracy of conventional
pixel-by-pixel full-spectrum-based classifiers while using only
a small fraction of the Raman spectrum. At the same time,
DCNNs exceed the classification accuracy of conventional
morphological classifiers which extract morpho-textural fea-
tures separately in different spectral bands, indicating that the
ability to link spatial information across different spectral
bands positively affects classification. This allows the
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FIGURE 3 Visualization of the learning process showing the training and validation accuracy during (A) the transfer learning TL, (B) the training from
scratch with the AlexNet topology AN and (C) the Minimal Net with 6 wavenumbers MN6. (A) The exemplary transfer learning lasted nearly 40 seconds and
ended with meeting the validation criterion, where the loss on the validation set was larger than or equal to the previously smallest loss for 5 times in a row
(validation patience). The validation frequency—meaning the number of iterations between evaluations of the validation loss—was set to 10 iterations. As the
stop criterion was met after 280 of 585 possible iterations, only 32 of the maximal 65 epochs were executed. An iteration uses a mini-batch, an epoch is the
full pass of the training algorithm over the entire training set—according to our mini-batch size of 10 images and a training set of approximately 90 images in
this run, this results in 9 iterations per epoch. As the training accuracy is measured every iteration—in contrast to the validation accuracy—a smoothed curve
is shown additionally. (B) The training of the AlexNet topology-based DCNN from scratch achieved 100% accuracy, too, but it lasted twice as long compared
to transfer learning. It did not reach the stop criterion and had to fulfill the maximum of 70 epochs and 1120 iterations. (C) It was done using a different
framework, where the accuracies are measured every epoch instead of every x iterations. For this example 6 wavenumbers were used, it took around
10 seconds
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conclusion that DCNNs simultaneously take into account
spectral as well as spatial information for classification.

The main challenge in applying DCNNs is to determine
a topology that matches the type and the complexity of the
data to be classified, and where the number of parameters to
be trained matches the amount of data available for training.
The training data set in our present study is by orders of
magnitude smaller than the datasets in typical image recog-
nition DCNNs [8, 44, 54]. Considering that some of these
studies involve thousands of images per class, and that in
some cases they can distinguish hundreds or thousands of
different classes [8, 44, 54], it comes as a positive surprise
that our comparatively small dataset allows to train relatively
robust classifiers, as demonstrated by classifier AN based on
the AlexNet topology. This forebodes that collecting more
data for training classifiers will not just allow to train
DCNNs with more layers and more parameters taking into
account more spectral information, but that such DCNNs
with more complex topologies may allow to distinguish cell
types with less obvious differences, such as cells from early
stage tumors or different subtypes of tumors. The challenge
of requiring sufficient amounts of training data for such stud-
ies clearly translates into a challenge for the design of under-
lying clinical studies.

The potential of DCNNs has by far not been fully
exploited by our present contribution. While some parame-
ters such as the learning rate or the mini batch size have
undergone minimal optimization, there is plenty of room for
further improvement through adding dropout layers [55],
performing regularization or taking optimization toward fur-
ther modifying the network topology.

We also believe that the rise of DCNNs will impact not
just microscopy of cellular material, and not just in the con-
text Raman microscopy. Being able to classify on parts of

the spectrum is clearly favorable toward stimulated Raman
scattering (SRS) and coherent anti-stokes Raman scattering
(CARS) microscopy [56–58], where selected wavenumbers
of the spectrum can be recorded at high speed. The signifi-
cantly reduced recording time of SRS or CARS microscopy
promises to relieve the challenge of acquiring sufficient
amounts of training data.

Finally, it is easily conceivable that DCNNs will also
impact the classification of infrared microscopic images,
where large amounts of training data can be collected
relatively easily [59, 60]. Infrared microscopy recently
gained even more traction from the availability of quantum
cascade laser systems [61], which increased the rate of data
acquisition by at least one order of magnitude. As an overall
conclusion, we see no reason to doubt that the groundbreak-
ing impact of DCNNs on numerous fields of object recogni-
tion will come to halt at Raman or infrared imaging in its
various forms.
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