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Infrared spectroscopy of single cells
and tissue is affected by Mie scatter-
ing. During recent years, several
methods have been proposed for
retrieving pure absorbance spectra
from such measurements, while cur-
rently no user-friendly version of the
state-of-the-art algorithm is available.
In this work, an open-source code for
correcting highly scatter-distorted
absorbance spectra of cells and tissues
is presented, as well as several
improvements of the latest version of
the Mie correction algorithm based on
extended multiplicative signal correction (EMSC) published by Konevskikh et al.
In order to test the stability of the code, a set of apparent absorbance spectra was
simulated. To this purpose, pure absorbance spectra based on a Matrigel spectrum
are simulated. Scattering contributions where obtained by mimicking the scattering
features observed in a set of experimentally obtained spectra . It can be concluded
that the algorithm is not depending strongly on the reference spectrum used for ini-
tializing the algorithm and retrieves well the underlying pure absorbance spectrum.
The calculation time of the algorithm is considerably improved with respect to the
resonant Mie scattering EMSC algorithm used by the community today.
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1 | INTRODUCTION

Infrared spectroscopic imaging has proven successfully its
capability to identify the chemical fingerprint of cells and
tissues without having a degenerative effect on the sample
[1–4]. In the last decade, application such as automatic

identification of single cells and cancer cells in human tissue
was established [1, 5–7]. In these works, it turned out that
scattering effects originating from Mie scattering have a
strong influence on the absorption spectra and data analysis
[8]. Mie scattering occurs if spherical morphological
structures are of comparable size as the incident radiation.
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For infrared spectroscopy and biological samples, the inci-
dent radiation is of the size of single cells and cell nuclei.
Thereby, the amount of intensity scattered away depends
strongly on the wavelength of the electromagnetic radiation,
the size parameters and refractive index of the scatterer. The
scattered radiation that does not reach the detector leads to
apparent absorption signatures in the measured absorbance
spectrum. The preprocessing of highly distorted spectra is
challenging because Mie scattering and absorption are
highly entangled. In general, scattering and absorption phe-
nomena are difficult to separate, as the two are mutual
dependent on each other.

During the recent years, several algorithms have been
developed and published that address the separation of scat-
tering and absorption phenomena in apparent absorbance
spectra of single cells [8–17]. Kohler et al developed an
extended multiplicative signal correction (EMSC)-based
algorithm for Mie scatter baseline correction [10], which
was extended by Bassan et al. for resonant Mie scattering
[8]. In the algorithm by Bassan et al., a wavelength-
dependent real part of the refractive index was added to the
approximation formula by van de Hulst for nonabsorbing
spheres [18]. It has been observed that this algorithm had the
tendency to produce corrected spectra which are contami-
nated by chemical features of the reference spectra. The con-
tamination decreases as the number of iterations is increased,
which leads to a compromise between speed and accuracy.
Further improvements of the Mie correction algorithm was
achieved by replacing the approximation formula for nonab-
sorbing spheres by the approximation of van de Hulst for
spheres with complex refractive index, which is described in
our recent publications [19, 20]. This approximation formula
calculates the complete extinction, rather than only the scat-
tering, and we therefore suggest to call the new algorithm
Mie extinction EMSC (ME-EMSC). This algorithm corrects
the broad Mie scatter oscillations in the apparent absorbance
spectra of single cells and dispersive effects that are due to
absorbance resonances.

In the paper at hand, we present and publish an open-
source and user-friendly MATLAB code for retrieving pure
absorbance spectra from highly distorted infrared absorbance
spectra of cells and tissues. The code can be downloaded
from GitLab,a and the paper provides clear directions for the
use of the code. Further optimization of the algorithm pub-
lished by Konevskikh et al. [19, 20] has been achieved by a
number of improvements related to stability and speed. The
algorithm is validated with a set of simulated apparent absor-
bance spectra, and we show that the algorithm converges
quickly and toward a pure absorbance spectrum with the
complete chemical information. Furthermore, we compare
the performance of the implementation at hand and the latest
version of the Mie scattering correction of Bassan et al.
(RMieS-EMSC v3 and v5).

2 | THEORY

In this section, the ME-EMSC algorithm is described step by
step. This is followed by a description of the method for sim-
ulating apparent absorbance spectra used for the validation
of the algorithm. Details on Mie scattering in infrared spec-
troscopy of single cells and tissues, and the ME-EMSC
model, can be found in Supporting information S1.

2.1 | The ME-EMSC algorithm

The underlying idea of the ME-EMSC algorithm is to
retrieve the pure absorbance spectrum in an iterative process.
The algorithm is initiated by selecting a reference spectrum,
which has chemical features that are in general different
from the underlying, and to be estimated, pure absorbance
spectrum. The differences are within the chemical variability
one expects for the data set. The reference spectrum is our
first best guess for the underlying pure absorbance. The logic
of the algorithm is such that the reference spectrum is
updated after each iteration to a gradually better estimation
of the true pure absorbance spectrum. The latest version of
the algorithm, which is the basis for the code presented in
this paper, was proposed by Konevskikh et al. [19]. The
algorithm and further improvements are presented in the fol-
lowing. Figure 1 shows a schematic representation of the
algorithm, where the red boxes mark improvements that are
new with respect to the latest published version by Konevs-
kikh et al. [20]. In the following, we explain each step of the
algorithm shown in Figure 1, by referring explicitly to the
boxes shown in the figure.

2.1.1 | Initialization

The algorithm is initiated by first selecting a reference spec-
trum. As reference spectrum, we may choose a standard ref-
erence spectrum, or a spectrum of the data set that is quasi
scatter free. In imaging, for example, a major part of the
spectra is scatter free and therefore they may be good candi-
dates for reference spectra. As a standard spectrum for cor-
recting spectra of cells and tissues, the Matrigel spectrum,
either from Reference [8] or the one provided with this
paper, can be used. The new Matrigel spectrum can be
downloaded from the GitLab repository where the code is
published, and the documentation can be found in Section 3
of the supporting material. In this paper, the Matrigel spec-
trum of Bassan et al. [8] will be used. This choice was made
for comparing the new suggested algorithm with earlier ver-
sions of Mie correction algorithms which were based on the
Matrigel spectrum. In order to align the reference spectrum
such that the ranges used for the parameters a and h can be
standardized, we decided to normalize the reference spec-
trum with respect to amide I. In addition, it is important that
the reference spectrum is baseline corrected. Therefore, we
suggest to select a baseline-free reference spectrum or to per-
form a baseline correction before the scaling with respect to1. https://gitlab.com/BioSpecNorway/me-emsc
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the amide I. The scaling of the reference spectrum allows
using the same parameter range even if multiple reference
spectra are used. Ranges for α0 and γ need to be specified
once for a data set. They are set by defining a parameter
range for n0, a and h. The program sets then the parameter
range for α0 and γ automatically.

Step 1: Estimation of n0s
The reference spectrum is used for estimating the scaled

imaginary part of the refractive index as

n0s ~νð Þ = Zref

~ν
ð1Þ

which is related to the imaginary part n0 by

n0s = f �n0 where f =
ln 10ð Þ
4πdeff

ð2Þ

Step 2: Estimation of nkk by the Kramers-Kronig relation
The scaled fluctuating part of the real refractive index is

estimated from the scaled imaginary part according to the
Kramers-Kronig relation

nkk ~νð Þ = 2
π
P
ð +∞

0

s�n0 sð Þ
s2 − ~ν2

ds ð3Þ

It can be shown that by considering the symmetry of the
refractive index, the Kramers-Kronig relation is equivalent
to the Hilbert transform [19], written as

nkk, s ~νð Þ = 1
π
P
ð +∞

−∞

n0s sð Þ
s− ~ν

ds = −
1
π~ν

*n0s ~νð Þ ð4Þ

where * denotes convolution. The Hilbert transform can
be calculated via the fast Fourier transform, leading to a
decrease in computational time by a factor of 100 com-
pared to calculating the Kramers-Kronig integral [19].

Step 3: Calculation of the set of Mie extinction curves
With an estimation of ns0 and nkk,s at hand, Mie extinc-

tion curves can be calculated according to the van de Hulst
approximation [18] given by

Qext ~νð Þ≈ 2− 4e− ρ tan β cos β
ρ

sin ρ− βð Þ

FIGURE 1 Schematic representation of the fast resonant Mie scatter correction algorithm. Red markings indicate changes done with respect to the algorithm
of Konevskikh et al. [20]
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− 4e− ρ tan β cos β
ρ

� �2

cos ρ− 2βð Þ

+ 4
cos β
ρ

� �2

cos 2β ð5Þ

Dividing the parameter ranges for α0 and γ into 10 dis-
tinct values, a total of 100 different extinction curves Qext

are obtained.
Step 4: Orthogonalization of Qext with respect to Zref
As the extinction curves Qext are approximately proportional

to the apparent absorbance spectrum Zapp, both Qext and Zapp
contain attenuation features due to both chemical absorption
and scattering. Chemical information in the form of the imagi-
nary part of the refractive index ns0 is entering Qext as Zref. One
of the key features of the EMSC model is that each spectrum is
modeled around the reference spectrum. The reference spectrum
itself in the EMSC model allows to estimate the scaling parame-
ter b in the model given in Equation 7, which refers to the effec-
tive optical path length. In order to avoid competition between
the parameter estimation for the reference spectrum and other
model parameters, the 100 different extinction curves Qext are
orthogonalized with respect to the reference spectrum Zref. This
is equivalent to regressing the extinction curves on the reference
spectrum Zref and removing the estimated contribution from the
reference spectrum Zref to the extinction curves.

Step 5: Meta-modeling of Qext for a parameter range via
principal component analysis (PCA)

For each parameter pair of α0 and γ, the extinction effi-
ciency Qext is calculated according to the Van De Hulst for-
mula in Equation 5 as a function of the wavenumber ~ν.

All obtained extinction efficiencies are collected in the
matrix Q and are decomposed via PCA according to

Q = TAPA
0 + EA ð6Þ

where TA and PA
0 are the scores and loadings, respectively,

and EA expresses the residual. The parameter A refers to the
number of components included. The loadings in PA

0 are
representing a meta-model of Qext, and are included as
model spectra in the EMSC model.

Step 6: ME-EMSC
The first A loadings from the PCA model are included in

the ME-EMSC model as model functions pi. The complete
model is given by

Zapp ~νð Þ = c + bZref ~νð Þ +
XAopt

i = 1

gipi ~νð Þ + ϵ ~νð Þ ð7Þ

The parameters c, b and gi are estimated by least squares
regression. The residual ϵ contains the unmodelled part of
the apparent absorbance spectrum. Thus, ϵ is expected to
contain chemical differences between the reference spectrum
and the true pure absorbance spectrum, unmodelled noise
and unmodelled scatter contribution. For more details on the
ME-EMSC model, see supporting information.

Step 7: Estimate Zcorrected

After estimation of the parameters c, b and gi by least squares
regression, a corrected spectrum is obtained according to

Zcorrected ~νð Þ = Zapp ~νð Þ− c−
PAopt

i = 1 gipi ~νð ÞÞ
b

ð8Þ

Step 8: Update reference spectrum

FIGURE 2 The ME-EMSC forward model. Correction of a measured lung cancer cell spectrum (in black) [10]. After each iteration, a better estimate for the
pure absorbance is obtained, leading to a more precise prediction of the apparent absorbance spectrum (in red). The residuals are shown in blue. The RMSE
decreases in each iteration (lower right)
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Calculating the corrected spectrum according to Equa-
tion 8 is equivalent to updating the reference spectrum by
adding the scaled residuals of Equation 7 according to

Zcorrected ~νð Þ = Zref +
ϵ ~νð Þ
b

: ð9Þ

The scaled residuals represent the unmodelled part of
Equation 7. Assuming that this unmodelled part is mainly
due to chemical differences between the reference spectrum
and the true underlying pure absorbance spectrum, the next
estimate of the corrected spectrum in Equation 9 is expected
to be closer to the true pure absorbance spectrum.

For the next iteration, the new estimate of the corrected
spectrum serves as the updated reference spectrum. Thus,
the updated reference spectrum is expected to be slightly
closer to the true pure absorbance spectrum. In addition, for
the next iteration step, both the negative parts of the refer-
ence spectrum Zref and the negative parts of the imaginary
part of the refractive index n0 are set to zero, as negative
parts of the imaginary part of the refractive index and the
pure absorbance spectrum refer to a nonphysical situation.

2.1.2 | Stop criterion

In general, we expect the residual to decrease after each iter-
ation step. This is due to the fact that every update of the ref-
erence spectrum brings the reference spectrum closer to the
true pure absorbance spectrum underlying the measured
apparent absorbance.

With a better estimate for the pure absorbance, the pre-
dicted apparent absorbance spectrum, given by

Zpredicted = c + bZref ~νð Þ +
XAopt

i = 1

gipi ~νð Þ

approaches the measured apparent absorbance spectrum,
while the residual decrease with the number of iterations
(Figure 2).

Konevskikh et al. [20] propose to terminate the iterative
process when the root mean square error (RMSE) has
reached the threshold of RMSE<10−4. The RMSE is calcu-
lated according to

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Zref − Zpredicted
� �2r

ð10Þ

where N is the number of wavenumber channels.

2.2 | Simulation of data sets

In order to test the stability of the resonant Mie algorithm, a
set of apparent absorbance spectra was simulated. The simu-
lated spectra were subject to the following two requirements:

1. The underlying pure absorbance spectra need to be
known for validating the pure absorbance spectra that

were retrieved from the simulated apparent absorbance
spectra.

2. The scattering features of the simulated apparent absor-
bance spectra were required to resemble scattering fea-
tures observed in experimentally obtained spectra.

The motivation for the last requirement was to take into
account that measured absorbance spectra are obtained from
samples that are not perfect and homogeneous spheres.
Therefore, the simulation of an apparent absorbance spec-
trum that is simply based on a perfect sphere usually shows
features that are very different from measured apparent
absorbance spectra of cells. We decided to base the simula-
tion of scatter features on experimentally obtained spectra.
The experimentally obtained spectra that were used for esti-
mating scatter contributions included 59 infrared spectra
obtained from lung cancer cells. The experimental setup
used to acquire the spectra can be found in Konevskikh et al.
[10]. Apparent absorbance spectra were simulated accord-
ing to:

Zapp ~νð Þ = c + bZpure ~νð Þ +
XA
i = 1

gipi ~νð Þ ð11Þ

where Zpure is a simulated pure absorbance spectrum. It is
important to note that Equation 11 does not represent an
additive model where the pure absorbance spectrum Zpure is
simply added to scatter baselines described by the third term
of the right-hand side of Equation 11. This term is obtained
by simulating a set of scatter extinctions using the real and
imaginary parts of the refractive index calculated from the
pure absorbance spectrum Zpure. The obtained set of scatter
extinctions is then orthogonalized with respect to Zpure. The
details of the establishment of the simulated spectra are
explained in the following.

In order to base the physical attenuation on measured
spectra, scatter contributions and chemical contributions in
measured spectra were first estimated employing the reso-
nant Mie scatter algorithm. The parameters c, b and gi were
taken from the last iteration in the correction, and used as
input for Equation 11. For the simulation of pure absorbance
spectra, we used the Matrigel spectrum [9] as a template. In
order to obtain a set of pure absorbance spectra with chemi-
cal variation, the Matrigel spectrum was decomposed into a
set of Lorentz lines [19]. Band positions were then systemat-
ically and randomly shifted either to the left or to the right
(±1 cm−1), and peak heights were changed by ±20%. This
resulted in a set of pure absorbance spectra, which resemble
the Matrigel spectrum, but with slightly different chemical
information. In Figure 3A, a simulated pure absorbance
spectrum is shown in red together with the Matrigel spec-
trum in black. Differences in band heights can be seen all
over the spectrum, while they are especially strong in the
region between 1500.0 and 1000.0 cm−1. Two sets of pure
absorbance spectra were simulated, representing two
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chemically different groups, A and B, with some random
variation within each group. Group A and B consisted of
25 spectra each.

The scatter effects described by the third term of the
right-hand side of Equation 11 are obtained by first calculat-
ing n0 and nkk using the simulated pure absorbance spectra
Zpure as input for Equation 6 in the supporting information.
Then, a set of Qext was simulated for a parameter range for
a, n0 and h. Here the same parameter ranges were used as
for estimating the parameters c, b and gi from the measured
spectra. The obtained set of Qext was then decomposed by
PCA. The loadings from the PCA, together with the parame-
ters c, b and gi obtained from the measured spectrum, were
then used as input into Equation 11.

In order to make sure that the simulated apparent absor-
bance spectra resemble measured spectra, Zpure was scaled
appropriately. Scaling of Zpure was done such that the fea-
tures of the chemical absorbance were as strongly expressed
as they were in a typical measured spectrum.

Simulations according to this procedure resulted in
apparent absorbance spectra with scatter contributions that
closely resembled the scatter contributions of experimentally
obtained spectra, while the underlying pure absorbance spec-
trum is known a priori. An example is shown in
Figure 3B. The simulated apparent absorbance spectrum is
shown in orange, while the experimentally obtained apparent
absorbance spectrum is shown in black. Each of the 59 infra-
red-spectra obtained from lung cancer cells [10] were used
as a template for estimating scatter contributions. The scatter
contributions where used as input for simulating apparent
absorbance spectra together with chemical contribution from
one pure absorbance from groups A and B, respectively.
This resulted in a total of 118 simulated spectra. In the fig-
ures of this paper, the pure absorbance spectrum from group
A is always plotted in dark red, while the pure absorbance
spectrum from group B is always plotted in dark blue. Simu-
lated apparent absorbance spectra, and the corresponding
corrected spectra, are plotted in orange and light blue,
respectively. The Matrigel spectrum is plotted in black.

3 | RESULTS AND DISCUSSION

In the paper at hand, the algorithm of Konevskikh et al. [20]
has been further improved. The changes relate to the optimi-
zation and stabilization of the algorithm and include

• Optimization of the number of principal components
used in the model

• Optimization of the stop criterion
• Weighting of the reference spectrum
• Guaranteed positivity of the reference spectrum
• Scaling the reference spectrum in each iteration

The algorithm is validated by the use of a simulated data
set. Furthermore, the dependency of the retrieved pure absor-
bance spectrum on the reference spectrum used, and the
retrieval of the true amide I peak position are reviewed.
Finally, the sensitivity toward initialization parameters is dis-
cussed. In order to give guidance to the user of the provided
algorithm, we explain every single step of usage of the algo-
rithm by an example.

3.1 | Proposed changes to the algorithm

3.1.1 | Setting the optimal number of principal components

As described in the previous section, a small number A of
PCA loadings are used in the RMieS-EMSC model in order
to compress the set of extinction curves Qext. The number of
loadings A has an impact on the precision of the model, its
stability and the computational time. Thus, A should be cho-
sen carefully and such that the Mie oscillations are repre-
sented precisely.

To achieve this, the level of explained variance repre-
sented by the number of loadings A is set when initiating the
algorithm. According to our experience with different data-
sets, a good level of explained variance is between 99.96%
and 99.99%. The optimal level of the explained variance
may differ when a different grid is set for α0 and γ. How the
level of the explained variance and the grid resolution are

FIGURE 3 Simulation of pure and apparent absorbance spectra. A, Simulated pure absorbance spectrum in red, and the Matrigel spectrum in black. B,
Simulated apparent absorbance spectrum in orange is shown together with the measured spectrum from which the scatter parameters are obtained for the
simulation
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related in detail will be studied further elsewhere. The num-
ber of loadings A is set in the first iteration, and is calculated
based on the level of the explained variance. Typically, A is
estimated to assume numbers from A = 7 to A = 9. If A is
too low, the Mie oscillations will not be represented pre-
cisely, resulting in an unstable baseline correction, which
still contains scattering features. In this case, the level of
explained variance has to be increased. When the number of
components reaches a certain level, a further increase results
in negligible contributions to the model, and the correction
does not change. However, increasing the number of load-
ings to a very high level, this may result in noisy loadings
and an instability related to the noise level.

3.1.2 | Revised stop criterion

After each iteration of the Mie correction algorithm, it is
expected that the RMSE of the prediction decreases. Never-
theless, the algorithm does not necessarily converge to zero
or a very low RMSE: If the apparent absorbance spectrum
contains features that are not described by the EMSC model
used, and if these features are strong, then the RMSE may
assume a relatively high value. In the previous version of the
algorithm, an absolute RMSE limit of 10−4 was used. This
may lead to a high number of iterations without achieving a
reasonable correction. We propose therefore a stop criterion
that is based on the convergence of the RMSE. We terminate
the algorithm when the RMSE does not change substan-
tially. The algorithm is also terminated if the RMSE starts to
increase. In addition, we allow setting a maximum RMSE
that can be used to determine if a correction was successfully
completed or not. The maximum RMSE can be set by the
user. As default it is set to infinity.

An option for overruling the stop criterion is implemen-
ted in the published code. This is done by setting a fixed
number of iterations. Caution should be taken when apply-
ing this option, as with only one or a few iterations, a cor-
rected pure absorbance spectrum is not achieved. The
algorithm relies on the iterative process of updating the ref-
erence spectrum, and gradually retrieving the underlying
pure absorbance. After only a few iterations, the corrected
spectrum will resemble the reference spectrum significantly.

3.1.3 | Weighting of the reference spectrum

Absorbance signals from the chemically inactive regions of
the sample, for example, from carbon dioxide molecules in
the air at around ~2300 cm−1, should not be modeled as
properties of the sample. These absorption modes are not
deformed by Mie scattering. Therefore, we suggest to down-
weight the chemically inactive regions by a weight function.
This is not equivalent to standard weighting in EMSC, or
weighted least squares, as the weighting is applied only to
the reference spectrum. The weight function can be seen in
Figure 9C and D, and details on how the weight function is
implemented can be found in the supporting information.

The result of employing a weight function is a flat baseline
with less disturbances.

3.1.4 | Guaranteed positive reference spectrum

Konevskikh et al. [20] suggested to set negative parts of the
imaginary refractive index to zero due to physical consider-
ations. For the same reason, we suggest that negative parts
of the reference spectrum used in the EMSC are set to zero,
such that a more physical reference spectrum is used in the
modeling. This means in practice that we set the negative
parts of the reference spectrum to zero, from which thereaf-
ter the imaginary part of the refractive index is calculated
according Equation 1, ensuring thereby already positivity of
the imaginary part of the refractive index. The imaginary
part of the refractive index does then not contain any nega-
tive parts since it is directly calculated from the reference
spectrum in each iteration step according to Equation 6 in
the supporting material.

3.1.5 | Scaling the reference spectrum

Konevkikh et al. [20] proposed to normalize the Matrigel
spectrum when initializing the algorithm. In order to ensure
that the scaling of the reference spectrum in each iteration is
maintained, we suggest applying a basic EMSC on the refer-
ence spectrum with respect to the initial reference spectrum
in each iteration step. When the reference spectrum is not
scaled in each iteration step, small scaling differences may
occur. The scaling of the reference spectrum in each iteration
step is done by dividing Zref by b from the basic EMSC
according to

Zk
ref ~νð Þ = c + bZ0

ref ~νð Þ + d~ν + e~ν2 + ϵ ~νð Þ ð12Þ
where Zk

ref is the reference spectrum in iteration no. k, and
Z0
ref is the reference spectrum used for initializing the

algorithm.
The scaling of the reference spectrum in each iteration

step is to avoid a small but gradual scaling deviations in the
reference spectrum in each iteration step. It is observed that
the adjustments are very small in each iteration, which is
taken as an indication of stability of the algorithm.

3.2 | Validation of the algorithm

3.2.1 | Simulation of pure absorbance spectra

In order to be able to determine whether the spectra can be
correctly classified after correction, two sets of pure absor-
bance spectra were simulated, using the method described in
Section 2.2. In Figure 4A), the simulated pure absorbance
spectra are shown. In total, 50 pure absorbance spectra were
simulated. The set of pure absorbance spectra is forming two
chemically different groups as visual inspection of
Figure 4A) shows. The spectra of the two different groups
are plotted in red and blue, respectively. The Matrigel is
plotted in black. PCA was used to investigate the simulated
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data. In Figure 4B), the score plot of the first and second
components is shown for the PCA analysis on the simulated
data set of pure absorbance spectra, including the Matrigel
spectrum. We observe that the simulated data set shows a
clear separation of the two chemically different groups,
groups A and B, with some random variation within each
group. The Matrigel spectrum is located between the two
chemically different groups. Here and in the following, the
PCA analysis is performed on the spectral region from 1000
and 1770 cm−1. It is evident from Figure 4B) that the chemi-
cal differences between the groups result in two distinct clus-
ters, both separated from the Matrigel spectrum, which is
located in the middle. In Figure 4C and D, the first and sec-
ond loading are shown. They show simulated chemical fea-
tures. In the following, the score plot in Figure 4B) will be
used as a reference to determine whether the correction of
the simulated apparent absorbance spectra can be considered
successful or not. In the following, we will only use one pure
absorbance spectrum from each group and introduce differ-
ent scatter effects that are obtained from a set of measured
apparent absorbance spectra.

3.2.2 | Simulation of apparent absorbance spectra

In order to evaluate the algorithms ability to retrieve pure
absorbance spectra, one spectrum from each group of

simulated pure absorbance spectra was chosen and used as a
pure absorbance spectrum for the simulation of apparent
absorbance spectra with different scatter features. For the
simulation of the apparent absorbance spectra, a variety of
scatter features from measured spectra were used as
described in Section 2.2. In total, 59 apparent absorbance
spectra with different scattering contributions were simulated
based on each pure absorbance spectrum. The simulated
apparent absorbance spectra are shown in Figure 5A).
Apparent absorbance spectra that were simulated with the
pure absorbance spectrum from group A are plotted in
orange, while the apparent absorbance spectra that were sim-
ulated with the pure absorbance spectrum from group B are
plotted in light blue. A variety of scattering features can be
observed. While all orange and light blue apparent absor-
bance spectra are based on one pure absorbance spectrum
from groups A and B, respectively, each simulated apparent
absorbance spectrum is based on the scatter features of one
of 59 measured apparent absorbance spectra.

Figure 5B) shows the score plot of the first two principal
components of a PCA performed on the set of apparent
absorbance spectra. It can be seen that the first two compo-
nents do not allow to group the apparent absorbance spectra
according to the groups A and B. The samples are spread
out in such a way that it is impossible to distinguish between

FIGURE 4 A, Simulated pure absorbance spectra, representing two chemically different groups. Group A is plotted in red, and group B in blue, and the
Matrigel spectrum is plotted in black. B, Score plot of the first and second components of the PCA on the simulated pure absorbance spectra. Two clusters are
obtained. This PCA will serve as a reference for evaluating the correction. (C and D) First and second loadings from the PCA, respectively. They show
simulated chemical features
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the two groups. The corresponding first and second loading
vectors of the PCA are shown in Figure 5C and D. It can be
seen that the loadings describe scatter features rather than
chemical features.

3.2.3 | Retrieval of pure absorbance spectra

The set of apparent absorbance spectra was corrected using
the algorithm presented in this paper. The corrected spectra
are shown in Figure 6A. The corrected spectra that are based

FIGURE 5 A, Simulated apparent absorbance spectra. Spectra with an underlying pure absorbance spectrum from group A are shown in orange, while for
the light blue, a pure absorbance from group B is used. B, The score plot of the first and second components of the PCA performed on the apparent
absorbance spectra shows that the clustering that was observed for the pure absorbance spectra cannot be achieved for the simulated apparent absorbance
spectra. In C and D, the corresponding first and second loadings are shown. Both loadings reveal clear scatter features

FIGURE 6 A, Corrected simulated apparent absorbance spectra in orange and light blue. They correspond to the pure absorbance spectra shown in red (from
group A) and dark blue (from group B), respectively. The Matrigel spectrum is shown in black. B, Projection of the corrected apparent absorbance spectra
into the score plot of the PCA of the pure absorbance spectra shown in Figure 4B. The corrected spectra cluster around the true pure absorbance spectra. Color
coding corresponds to the color coding used in A. As a reference, the scores of all simulated pure absorbance spectra from group A and B are shown in black
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on the pure absorbance spectrum from group A are plotted
in orange, and the corrected spectra that are based on the
pure absorbance spectrum of group B in light blue. The pure
absorbance spectrum of group A is plotted in red, while the
pure absorbance spectrum of group B is plotted in dark blue.
The Matrigel spectrum is plotted in black. It is obvious that
the fast Mie scatter correction algorithm presented in this
paper is able to restore the chemical features of the underly-
ing pure absorbance spectra instead of resulting in corrected
spectra that were contaminated by chemical features of the
Matrigel spectrum. In order to evaluate the quality of
the correction, the corrected spectra were projected into the
score plot of the PCA of the simulated pure absorbance spec-
tra of Figure 4B. The result is shown in Figure 6B. It can be
observed that for both group A and group B, the corrected
spectra cluster tightly around the pure absorbance spectrum
that was used for simulations of apparent spectra with differ-
ent scatter features. As mentioned previously, our earlier ver-
sions of the Mie correction algorithm suffered from being
strongly affected by the reference spectrum. This can be
clearly seen in Reference [9] in fig. 1, where the corrected
spectra adapt features from the reference spectrum. From
Figure 6B, it is evident that the algorithm presented in this
paper does not suffer from this problem; the corrected spec-
tra cluster around the true pure absorbance spectrum with a
spread that is much lower than the spread within the two
chemical groups A and B.

By means of classification with PCA, the algorithm has
shown to be reliable, and the true pure absorbance spectrum
is retrieved.

3.3 | Dependency on the reference spectrum

Earlier versions of the resonant Mie scattering algorithm
revealed challenges related to the correction being strongly
biased by the initial reference spectrum. It appeared that the

corrected spectrum was dominated by features of the refer-
ence spectrum. This is evident in fig. 1 of Reference [9],
where we can see that to the left of the O H stretching peak
at approximately 3400 cm−1, the corrected spectrum has a
shoulder which appeared in the reference spectrum but not
in the measured raw spectrum. In addition, at around approx-
imately 2900 cm−1, corresponding to a lipid absorption
band, the absorbance is much lower in the corrected spec-
trum than what is expected when inspecting visually the
measured apparent absorbance spectrum. In the following,
we will demonstrate that the algorithm presented in this
paper, which is based on the algorithm proposed by Konevs-
kikh et al. [19], does not suffer from the problem to be
biased to a strong degree by the reference spectrum.

3.3.1 | Reference spectrum with altered O H stretching
region

In order to test the influence of the reference spectrum on
the corrected spectra, the absorbance of the Matrigel spec-
trum was modified in the O H stretching region. In
Figure 7, the modified Matrigel spectrum is shown in black.
Its absorption is lowered to the left of the peak at
ca. 3300 cm−1. The pure absorbance spectrum that was used
for simulating apparent absorbance spectra is shown in red.
The pure absorbance spectrum is based on the Matrigel spec-
trum, but contains chemical differences that were simulated
as described in Section 2.2. We observe that the Matrigel
spectrum in addition differs in the broad O H stretching
absorbance. This difference was introduced in order to
investigate if the corrected spectrum adapts to the modified
Matrigel spectrum in the O H stretching region or not, a
feature that was previously observed for the algorithm devel-
oped by Bassan et al. [9] (See, eg, fig. 1 in Reference [9]).
When correcting the simulated apparent absorbance spectra
with the black reference spectrum, the corrected pure absor-
bance spectra plotted in orange in Figure 7 was obtained.
We observe that the true features of the pure absorbance
spectrum were retrieved.

3.4 | Ability to retrieve the true amide I peak position

When introducing the resonant Mie model, Bassan et al. [9]
showed that a more reliable peak position of the amide I
absorption band at 1655 cm−1 could be retrieved. A shift in
the amide I peak position occurs due to the so-called “disper-
sive effect,” that is, the effect of a fluctuating real refractive
index, caused by the frequency-dependent absorption. For
the amide I absorption band, this results in a shift toward
lower wavenumbers. This can be incorrectly interpreted as
changes in the secondary structure of local segments in pro-
teins. As the amide I peak position can play a major role in
classification of cells and tissues, it is desired to retrieve the
true peak position when preprocessing spectra. In this paper,
we have demonstrated that the correction is less dependent
on the reference spectrum. In order to demonstrate that the

FIGURE 7 Correcting simulated apparent absorbance spectra with a
modified version of the Matrigel spectrum (in black) as initial reference
spectrum. Corrected spectra are shown in orange, and their underlying pure
absorbance spectrum is shown in red
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retrieval of the true amide I peak position is a feature of the
model, and not related to the reference spectrum, we investi-
gate this matter closer. We start by correcting simulated
apparent absorbance spectra, where a significant shift in
amide I is present. Subsequently, simulated apparent absor-
bance spectra are corrected with a modified version of the
Matrigel spectrum, where the amide I peak position is
dislocated.

3.4.1 | Correcting simulated spectra with a significant shift
in amide I

The lung cancer cell data set used for simulations does not
show strong shifts in amide I peak position in the raw spec-
tra. When correcting the amide I position in the measured
spectra, the peak position was moved from on average
1649.8 ± 2.1 to 1651.8 ± 1.7 cm−1. Due to the small dis-
placement of the absorption band, the shifts in the simu-
lated apparent absorbance spectra were also rather small.
During the simulations, the amide I position was moved
from 1653.0 cm−1 in the pure absorbance spectra, to on
average 1649.5 ± 1.6 cm−1 in the apparent absorbance
spectra. The correction brought the peak back to
1652.7 ± 0.3 cm−1.

In order to demonstrate this for cases where the shift in
the peak position is greater, new simulations were done
based on measured data of breast cancer cells provided by
Nick Stone. A description of the data set can be found in
the supporting material. In this data set, the amide I peak
position is found at 1635.3 ± 4.8 cm−1, and corrections
moved it to 1651.0 ± 1.2 cm−1. Figure 8 shows an example
of a simulated spectrum, where the amide I position is
shifted from 1653.0 cm−1 in the pure absorbance spectrum,
to 1643.0 ± 1.9 cm−1 in the apparent absorbance spectrum.
When correcting the apparent absorbance spectra, all amide
I peak positions were shifted back to 1650.8 cm−1. As the
correction is shown to be less dependent on the reference
spectrum, this is taken as a strong indicator that the
retrieval of the true amide I peak position is related to fea-
tures of the model rather than the reference spectrum. In

the supporting material, it is further shown that even in
cases where the amide I peak position is shifted in the refer-
ence spectrum, the correction does not adapt to this shift. It
is concluded that the retrieval of the true peak position is a
feature of the ME-EMSC model, and not merely a conse-
quence of the corresponding peak position in the reference
spectrum.

3.5 | Sensitivity toward initialization parameters

As the optimal ranges for the parameters depend on the data
set, the following section includes remarks on how the algo-
rithm should be initiated, as well as an assessment on the
sensitivity toward the ranges set for the parameters. Prior to
correcting a large data set, one should start with a smaller
selection of spectra to adjust the parameter settings. In the
MATLAB code, this is done in the mode called “PreRun.”
Correction of the whole data set is done in mode “Correc-
tion.” Finding the optimal parameters will generally be a
process of trial and failure. Descriptions on how the optimal
parameter settings are obtained will be related to a concrete
example, namely, the correction of the lung cancer cell data
set [10].

It is important to note that adjustment of the parameter
ranges should be performed without weighting the reference
spectrum, or setting negative parts of the reference spectrum
to zero. Otherwise, the effects of changing the parameters A,
h and the ranges for a and n0 will become less visible. When
the optimal parameter settings are found, the negative parts
of the reference spectrum should be set to zero. In the pub-
lished code, this is automatically handled by selecting the
mode (“PreRun” or “Correction”). Weighting is optional
after the optimal parameter settings are found, and is turned
on by default.

3.5.1 | Setting a, n0 and h

As a default, the program uses the following physical
parameters:

FIGURE 8 A, The simulated pure absorbance spectrum in red, and the Matrigel spectrum in black. B, The amide I peak position is shifted in the simulated
apparent absorbance spectra (orange) relative to the corresponding peak position in the underlying pure absorbance spectrum. The measured spectrum used as
a template for the scatter contribution is shown in black. This spectrum is obtained from breast cancer cells. C, The corrected simulated apparent absorbance
spectrum is shown in orange, and the Matrigel spectrum in black. A more reliable amide I peak position is retrieved with the correction
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a 2 [2 μm, 7.1 μm].
n0 2 [1.1, 1.4].
h = 0.25.
For the data sets available in this study, the above given

parameter ranges result in a stable correction. It is observed
that when choosing a parameter range that does not fit to a
given data set, the model is not capable of modeling Mie
scattering in the measured spectra, and the correction fails.
This introduces artifacts in the corrected spectra, where
some of the corrected spectra do not resemble absorbance
spectra at all. Therefore, it is fairly easy to identify an
unsuccessful correction. From the data sets that have been
investigated, it is observed that the correction would rather
fail than retrieving the wrong chemical information. Arti-
facts that may occur are usually located in the chemically
inactive regions, as well as in the O H stretching region.
The final RMSE of spectra, for which the correction is not
successful, is in general significantly higher than for suc-
cessful corrections. However, it is important to note that
the level of acceptable RMSE dependents on the data set,
and a visual inspection is recommended until an appropri-
ate parameter range is found. In order to allow adjusting
the parameter range for a given data set, the code published
together with this paper can be first run in the mode named
“PreRun.” This mode allows adjusting the parameter ranges
for a smaller subset of spectra in the data set. As men-
tioned, this mode pacifies the down-weighting of the chem-
ically inactive regions in order to allow detecting

unsuccessful baseline corrections and visual artifacts that
typically are observed in these regions. In the supporting
material, examples are given on the result of corrections
where the parameter ranges were set outside of the stable
regions. This is shown for both experimentally obtained
absorbance spectra, and simulated apparent absorbance
spectra.

3.5.2 | Setting the number of loadings A

As described in Section 3.1, the number of loadings A is set
based on a desired level of explained variance in the Mie
extinction curves. A user also has the option to overwrite
this criterion by setting A directly. As a default, we propose
to use a level of 99.96% explained variance. For the pro-
posed settings for a, n0 and h given in the previous section,
and with the Matrigel spectrum as reference spectrum, this
limit results in A = 7 components. Figure 9A) shows a cor-
rection of the set of lung cancer cells, where the default
parameters for a, n0, h and explained variance are used. It is
evident that the Mie oscillations are not represented pre-
cisely and the correction is not optimal. Therefore, we need
to increase the explained variance in this case. By setting the
limit of the explained variance to 99.99%, we see that the
Mie oscillations are modeled more precisely (see
Figure 9B). The optimal number of components is therefore
in this case A = 9. Note that if weighting is used while esti-
mating the optimal explained variance, the effect of a too
low number of loadings A is less visible. This is shown in

FIGURE 9 Correcting a selection of the lung cancer cell spectra by (A) setting the explained variance in the PCA on the scattering curves to 99.96% and
(C) by applying the weight function. B, By setting the explained variance to 99.99%, the baseline correction is better, and D, the weight function can be
applied without masking oscillations in the baseline
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Figure 9C, where the applied weight function is shown
in red.

3.5.3 | Setting the weight function

When applying weighting of the reference spectrum, the user
specifies the extension of the chemically active regions,
which will correspond to the points of inflection of the
hyperbolic tangent function. The following parameters are
set as default for the weight function.

Inflection points: 3700, 2550 and 1900 cm−1. Corre-
sponding slope, κ: 1 for all inflection points.

Figure 9D) shows the effect of weighting the refer-
ence spectrum with the default weights. By applying the
default parameters for the weight function, a smoother
baseline correction is achieved for the lung cancer cell
data set. In order to adjust the weight function to a data
set, the weight function parameters can be adjusted. After
the optimal weight function is found, the negative parts
of the reference spectrum can be set to zero. In the pub-
lished MATLAB code, this is done by changing to mode
“Correction.”

Note that when weighting is used, it requires that the ref-
erence spectrum is baseline corrected. If the reference spec-
trum has a negative baseline, the weighting would result in
deformation of the spectrum, which further introduces arti-
facts in the corrected spectra.

3.5.4 | Correcting the whole data set

Correction can now be performed on the whole data set, with
the optimal initialization parameters. This is done in the
MATLAB code by changing the mode to “Correction.” Fail-
ure of the correction for individual spectra can be detected
by considering the final RMSE value. The program offers a

quality test based on a maximum limit for the RMSE. As
default, this limit is set to infinity. As this limit will be
dependent on the data set, it should be determined by the
user after visual inspection. In the published code, this visual
inspection is implemented.

3.5.5 | Speed improvements and run-time analysis

The ME-EMSC algorithm is implemented in MATALB with
general considerations to speed optimization. Konevskikh et al.
[19] proposed two major improvements for decreasing the com-
putational time, that is, using the Hilbert transform in place of
the Fourier transform, and reducing the parameter space of the
meta-model. Compared to the two latest versions of the RMieS-
EMSC code published by Bassan et al. [9] (version 3 and 5),
the new code performs significantly better, with a substantial
reduction in computational time, as seen in Figure 10. The ME-
EMSC code decreases the runtime with 94% with respect to the
RMieS-EMSC code, when correcting spectra of 1428 wave-
numbers for 15 iterations per spectrum. The runtime analysis is
performed in MATLAB R2018a, on a Lenovo Thinkstation
p920 with 20 Intel Xenon cores (2.20 GHz, 126 GB RAM).

An important difference between the RMieS-EMSC
algorithm and the ME-EMSC algorithm is the formula used
for calculating the Mie scattering. While the RMieS-EMSC
algorithm is built on the approximation formula for Mie scat-
tering only, the ME-EMSC also considers the sample
absorption, and thereby employs the full Mie extinction
approximation formula. As scattering and absorption are
mutually dependent on each other, absorption should be
taken into account when estimating the scattering from a
sample. While using a computationally more expensive
approach, we were still able to reduce the computational
time significantly compared to the RMieS-EMSC algorithm.

FIGURE 10 Runtime analysis of the improved ME-EMSC algorithm (in dashed blue) and the RMieS-EMSC algorithm of Bassan et al. [8] (version 3 in red
and version 5 in green). The runtime is shown per spectrum for (A) 1 iteration per spectrum, and (B) 15 iterations per spectrum
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4 | CONCLUSION

In this paper, we presented an optimized code for the correc-
tion of scatter-distorted infrared spectra of cells and tissues
and published the source code in MATLAB. The presented
code is an improvement of earlier published algorithms. We
were able to prove that the optimized code overcomes several
crucial shortcomings of earlier versions of the code. A major
criticism of previous versions of the algorithm was that the
corrected spectra acquired features of the reference spectrum
that were used to initialize the algorithm. In the paper at hand,
we show by using a simulated data set that the latest algorithm
allows restoring the true underlying pure absorbance spec-
trum. Reference spectra with different characteristic features
were considered such as a reference spectrum with a shifted
peak position a reference spectrum with characteristic features
in the O H stretching region. We could demonstrate that the
outcome of the correction is not influenced by the choice of
the reference spectrum. In line with this paper, the source
code in MATLAB was made accessible at the GitLab reposi-
tory. In order to provide a stable source code, several stabil-
ity improvements were done. A weighting of the
chemically inactive regions in the reference spectrum for
the EMSC parameter estimation and the requirement of
non-negativity of the reference spectrum in the iterative
algorithm achieved a stable parameter estimation and stable
corrections. Improvements of the stop criterion and stable
estimates of the number of components make the code user
friendly and easy to use on new data sets.

The applicability of the code on simulated spectra and
different measured data of cells and tissues proved that the
code is universally applicable. Currently, we are studying
the application of the Mie correction code on silica beads
embedded in a resin matrix with satisfactory results. These
results will be published elsewhere. Further work on speed
improvements are in progress and updates of the code will
be published in the GitLab repository.
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