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Abstract

Motivation: Applying infrared microscopy in the context of tissue diagnostics heavily relies on

computationally preprocessing the infrared pixel spectra that constitute an infrared microscopic

image. Existing approaches involve physical models, which are non-linear in nature and lead to

classifiers that do not generalize well, e.g. across different types of tissue preparation.

Furthermore, existing preprocessing approaches involve iterative procedures that are computa-

tionally demanding, so that computation time required for preprocessing does not keep pace with

recent progress in infrared microscopes which can capture whole-slide images within minutes.

Results: We investigate the application of stacked contractive autoencoders as an unsupervised ap-

proach to preprocess infrared microscopic pixel spectra, followed by supervised fine-tuning to ob-

tain neural networks that can reliably resolve tissue structure. To validate the robustness of the

resulting classifier, we demonstrate that a network trained on embedded tissue can be transferred

to classify fresh frozen tissue. The features obtained from unsupervised pretraining thus generalize

across the large spectral differences between embedded and fresh frozen tissue, where under pre-

vious approaches separate classifiers had to be trained from scratch.

Availability and implementation: Our implementation can be downloaded from https://github.

com/arnrau/SCAE_IR_Spectral_Imaging.

Contact: axel.mosig@bph.rub.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, the application of label-free infrared microscopy to

histopathological tissue samples has paved the way for spectral histo-

pathology (Bird et al., 2012; Kallenbach-Thieltges et al., 2013), which

has proven to be a reliable approach to assess the disease status of

histological sections. Infrared microscopy measures samples with a

resolution of few lm and provides an infrared spectrum representing

the biochemical tissue status at each pixel location. It has been shown

that the pixel spectra obtained from infrared microscopes are highly

representative for different tissue components as well as for disease

status. As illustrated in Figure 1, this allows supervised classifiers to

infer the tissue component or disease status from an infrared pixel

spectrum, which has proven successful for several types of cancer

ranging from colon carcinoma (Kallenbach-Thieltges et al., 2013;

Kuepper et al., 2016) to lung (Bird et al., 2012; Großerueschkamp

et al., 2015) and bladder (Großerueschkamp et al., 2017) cancer.

It is commonly observed that besides biomedically relevant mo-

lecular signatures, data obtained from highly sensitive bioanalytical

techniques contain technological or biological artifacts, background

signal and other confounders that mask those features that are

relevant towards disease status. For infrared microscopy, such
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background signals are particularly severe and complex in nature

(Bassan et al., 2010), and several approaches have been proposed to

disentangle them from diagnostically relevant signals. The band-

width of proposed approaches range from methods based on physic-

al models (Bassan et al., 2010; Konevskikh et al., 2018; Romeo and

Diem, 2005) to statistical approaches utilizing principal components

(Marcsisin et al., 2012). While these methods have contributed to

the successful application of spectral histopathology in clinical stud-

ies, preprocessing infrared spectra remains subject of active investi-

gation in the community (Konevskikh et al., 2018).

Our contribution breaks with those existing approaches and

takes a machine learning perspective on the problem. To elaborate,

preprocessing infrared spectra can be viewed as a representation

learning (Bengio et al., 2013) problem: raw infrared spectra are dif-

ficult to classify, so that they need to be transformed into a represen-

tation that is more accessible for classification or interpretation.

Recent progress on learning such representations in an unsupervised

manner suggests that the resulting representations are often more

suitable for classification than previous, problem domain specific

‘feature engineered’ representations (Bengio et al., 2013). The suc-

cess of unsupervised representation learning is often coupled with

the availability of large amounts of data, which are commonly ac-

cessible in spectral histopathology. Even a single image commonly

contains tens of millions of spectra (Kallenbach-Thieltges et al.,

2013) that can be measured within minutes (Kuepper et al., 2018).

In other words, the substantial recent progress in the field of repre-

sentation learning bears great promises for spectral histopathology

that we investigate in this contribution.

The aims of our present contribution go beyond the mere assess-

ment of recent progress in representation learning to spectral histo-

pathology. Specifically, we propose an approach to assess the

robustness of a learned representation. We achieve this by transfer-

ring a classifier that is based on a learned representation to a related

domain. In our specific case, we transfer a classifier trained on data

obtained from formalin-fixed tissue to data from fresh frozen tissue,

which is accompanied by significant changes in the infrared spectra.

If the classifier turns out to be transferable, the learned representa-

tion can be considered highly robust against sample variability and

heterogeneity. As robustness is of predominant importance when

classifying biomedical sample material, we consider the domain

transfer approach as a major contribution of our present paper,

which can be employed to assess the robustness of not just infrared

spectral classifiers, but also of classifiers for data obtained from

other bioanalytical techniques.

2 Background

2.1 Spectral histopathology
In order to assign disease relevant classes to infrared microscopic

pixel spectra, different studies in spectral histopathology have

employed a range of different classification approaches. One com-

mon approach (Bird et al., 2012; Großerueschkamp et al., 2015;

Kallenbach-Thieltges et al., 2013) is to use pixel spectra classifiers to

obtain a segmentation of the tissue sample into different physiolo-

gically or pathologically relevant components. The segmented image

then serves as a basis for a diagnostic characterization, for instance

by determining the relative abundance of cancerous or otherwise

disease relevant pixels (Yosef et al., 2017). Some studies (Bird et al.,

2012; Kallenbach-Thieltges et al., 2013) suggest that resolving other

tissue components along with the distinction into pathological ver-

sus healthy regions is helpful or even necessary to reliably character-

ize the disease status. Remarkably, all aforementioned infrared

microscopy based studies involve preprocessing of the spectra, typic-

ally in the form of physical models that either remove resonant Mie

scattering (Bassan et al., 2010) or dispersion ‘artefacts’ (Romeo and

Diem, 2005).

Until recently, most spectral histopathology studies utilized

Fourier transform infrared (FTIR) microscopes, where the infrared

spectrum is derived by Fourier transforming the signal obtained from

an interferometer. Very recently, FTIR microscopy has been chal-

lenged by quantum-cascade laser (QCL) microscopes, where the spec-

trum is obtained from frequency tunable quantum cascade lasers.

QCL-based microscopes exceed the measurement speed of FTIR-

based systems by almost two orders of magnitude (Großerueschkamp

et al., 2017), so that infrared images of complete slides of histological

sections can be captured within minutes. At the same time, however,

the infrared spectrum is limited to a smaller spectral range, which in

particular affects the spectral baseline that is important for resonant

Mie correction.

2.2 Infrared spectroscopy
To understand the challenges in spectral histopathology, it is worth-

while to introduce some background on infrared spectroscopy.

Infrared spectra are well-known to be a highly characteristic finger-

print of the molecular vibrations and hence of the molecular compos-

ition of biological samples. In particular, the so-called fingerprint

region between 1500 and 500 cm–1 is known to be highly specific for

the molecular decomposition of the sample. Furthermore, the amide I

and amide II bands are commonly observed as dominant peaks be-

tween wavenumbers 1700–1600 and 1600–1500 cm–1, respectively;

these amide bands are highly characteristic of protein secondary

structure.

Infrared spectrometers in general and infrared microscopes spe-

cifically will yield spectra for molecular characterization between

4000 and 900 cm–1 due to the used MCT (mercury cadmium tellur-

ide) detectors at a typical wavenumber resolution of 1–2 cm–1. It is

common practice in infrared microscopy (Bird et al., 2012;

Großerueschkamp et al., 2015; Kallenbach-Thieltges et al., 2013;

Kuepper et al., 2016) to limit the spectrum to the region of roughly

1800–900 cm–1 after preprocessing using physical models, which

usually involve the complete spectrum.

2.3 Adjusting spectral background in tissue spectra
Scattering components in infrared spectra of biological samples were

first reported in (Mohlenhoff et al., 2005), which was later recognized

as Mie scattering (Miljkovi�c et al., 2012) and led to the first correc-

tion models (Kohler et al., 2008). The explanation of the scattering
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Fig. 1. Principle of spectral histopathology: The infrared spectrum from each

pixel position is preprocessed using a physical model and subsequently classi-

fied into the respective tissue component. Our newly proposed approach aims

to use deep neural networks to classify the uncorrected spectrum, where prepro-

cessing is substituted with an unsupervised deep representation learning step
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background signal was further improved by identifying it as a disper-

sion of the refractive index due to absorption (Bassan et al., 2009).

This model finally led to the now widely used correction procedure

proposed in (Bassan et al., 2010).

2.4 Essential traits of infrared spectra
Infrared spectra of biological samples are typically dominated by the

amide I and amide II peak due to the high content in protein. As

illustrated in Supplementary Figure S1, uncorrected raw spectra ex-

hibit a high degree of variance across the whole spectrum. Only after

eliminating resonant Mie scattering, the variance is largely reduced

and those differences that are characteristic for the molecular com-

position and hence disease status become more pronounced. While

these differences seem subtle at first sight, the numerous success sto-

ries of spectral histopathology show that they are highly significant

and discriminative.

Raw spectra at first sight appear enigmatic and almost inaccess-

ible to machine learning. On the one hand, mean spectra of different

classes of tissue components that belong to different tissue compo-

nents or undergo different sample preparation are highly correlated

(Supplementary Fig. S7), while on the other hand the overwhelming

degree of variance largely overshadows those rather subtle differen-

ces that one observes when comparing mean spectra.

The combination of subtle differences covered by high variance

background signal explain the importance and the success of physic-

al correction approaches, most notably the seminal work on reson-

ant Mie separation (Bassan et al., 2010). To put the present

contribution into context, we investigate to what extent deep repre-

sentation learning can untangle variances in a way that infrared

spectra can be classified without preprocessing.

2.5 Representation learning and domain adaptation
Our work is motivated by groundbreaking progress in the field of

representation learning surveyed in (Bengio et al., 2013), which

gained much of its momentum from related breakthroughs in the

field of deep neural networks and convolutional neural networks

(Rifai et al., 2011). Specifically, we employ stacked autoencoders, a

schematic example of which is depicted in Supplementary Figure S2.

The process of training an autoencoder yields a lower dimensional

representation of the input data in the last layer of the encoder. This

representation can be thought of as an in some sense near-optimal

non-linear embedding of the original data in a lower dimensional

embedding. Note that the process of training an autoencoder also

yields a decoder, i.e. the reverse mapping from the embedding to the

original feature space. While the decoder rarely is of immediate

practical use, applying the concatenation of the encoder with the de-

coder to an original data point will essentially reconstruct a very

close approximation of the data point. The expectation towards the

representation in the last layer of the encoder is that variances with-

in the input data are being untangled according to features that have

been obtained from the non-linear transformations that result from

previous layers of the autoencoder.

2.6 Transfer learning
An essential question arising from the high accuracies often achieved

by extremely parameter rich deep neural networks is whether the

network is overfitting the training data rather than having identified

truly discriminative features between the classes during supervised

training. Observing strong validation measures in conventional

cross-validation schemes is certainly a necessary, but not sufficient

criterion. A stronger criterion will be to test how the classifiers

perform on previously unseen types of data. In the domain of clinical

data, one can identify several levels of what constitutes previously

unseen. In Guo et al. (2017), it was suggested that validation should

be performed at the highest possible level of replication in order to

avoid overfitting. In clinical studies, different levels of replication

are conceivable such as changes in the measurement device, changes

in sample preparation, or even multi-center studies (Zech et al.,

2018).

The concept of robustness is closely related to the transferability

of classification models: If a classifier generalizes when trained on

one specific task, it should be feasible to further generalize classifica-

tion towards a second task similar to the first task. In a related con-

tribution (Guo et al., 2018), it was shown that model transfer

significantly improves classification of Raman microscopic images

across four different microscopes. We investigate transferability in a

somewhat broader setting: First, we train a deep neural network on

formalin fixed paraffin embedded (FFPE, henceforth referred to as

embedded) histopathological samples of colon tissue. Then, we in-

vestigate a transfer of this classifier to infrared images of fresh fro-

zen tissue samples (henceforth referred to as fresh tissue). In related

previous studies (Kuepper et al., 2016), classifiers were built inde-

pendently for embedded and fresh tissue, respectively, as model

transfer appeared infeasible. In our contribution, we assess transfer

learning approaches (Pan et al., 2010) to facilitate the transfer of an

FFPE trained neural network to fresh tissue.

3 Approach

Our computational approach is summarized in Figure 2. It is based

on first obtaining a gold standard segmentation based on conven-

tionally corrected spectra classified by a conventional, previously

established classifier. The only purpose of this pre-segmentation is

to obtain a sufficient amount of training data for the second deep

learning stage. The deep learning stage is in turn divided into two

steps: An unsupervised pre-training is succeeded by supervised fine-

tuning into the final network pt-MLP.

As it has been demonstrated (Chen and Lin, 2014), these neural

network based approaches largely benefit from the availability of

large amounts of data. This sets apart our approach in a fundamen-

tal way from previous approaches, which rely on manual annota-

tions. As there are inherent difficulties in obtaining suitable

annotations on larger numbers of histopathological samples, con-

ventional approaches are favorable towards classifiers that general-

ize well on small amounts of training data. In this sense, our present

contribution aims to establish neural network based approaches that

scale with the large amounts of data that are typically available in

clinical studies involving infrared microscopy.

Beyond the accuracy of classifier pt-MLP, a key question to be

assessed is whether pt-MLP generalizes well to unseen datasets, or

whether it rather overfits the training data. In order to assess the cap-

ability of pt-MLP to generalize, we perform transfer learning.

Specifically, we employ a second set of colon cancer related tissue sam-

ples. This set of tissue samples and the image spectra obtained from it

differ substantially from the first set: first, this dataset has been acquired

from fresh tissue rather than paraffin embedded tissue. Second, the sam-

ples were obtained as full sections rather than as tissue microarrays. The

substantial differences in the image spectra are illustrated in

Supplementary Figure S1. A gold standard pre-segmentation for produc-

ing training data was applied in a similar fashion as for the first dataset.

For convenience, Supplementary Table S1 provides an overview

of the different supervised classifiers and their role in this study.
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4 Materials and methods

4.1 Sample material
We employed two datasets of infrared images of histopathological

samples related to colon cancer that have been investigated in previ-

ous studies.

The first dataset from (Kuepper et al., 2016) consists of infrared

microscopic images of embedded tissue microarray (TMA) samples.

We employed two such TMA slides purchased from US Biomax

Inc., MD, USA, referred to by their IDs CO1002b and CO722, re-

spectively, each of which consists of 100 circular spots of tissue sam-

ple from more than 60 different patients. Each spot has a diameter

of roughly 1 mm. Along with this dataset, we also utilized the ran-

dom forest classifier established previously in (Kuepper et al., 2016),

which classifies resonant Mie corrected infrared pixel spectra into

19 different classes representing 13 types of tissue components and

subclasses, as depicted in Supplementary Figure S3. This random

forest classifier is referred to as classifier RF in Figure 2 and

throughout the rest of this manuscript. We will refer to this dataset

of formalin-fixed and paraffin-embedded (FFPE) tissue microarray

spots as the FFPE dataset. The FFPE dataset was available and uti-

lized both in the form of uncorrected spectra and resonant Mie cor-

rected spectra preprocessed by the approach from (Bassan et al.,

2010). The FFPE dataset was subdivided into three parts, one part

for unsupervised pre-training, the second subset for supervised fine-

tuning, and the third subset was withheld for validation. The second

subset for supervised fine-tuning was further subdivided into a train-

ing set and a test set, so that training and test accuracy can be deter-

mined throughout the training process of supervised fine-tuning.

The validation subset was strictly separated from the other two parts

and was neither involved in pre-training nor in supervised learning.

Our second dataset was acquired from fresh-frozen histopatho-

logical colon tissue samples. Each sample is represented by one in-

frared image covering a whole tissue section roughly 2 cm2 in size.

The dataset involves seven such whole-slide images labeled as Fresh

1–Fresh 7 involving seven different patients. For this dataset, we uti-

lized a corresponding classifier RF2 that was established previously.

One of the seven samples (see Supplementary Table S2 for an over-

view) was partially used to recruit training data for transfer learning

as described in Section 4. The training data for classifier RF2 have

been obtained fully independent of classifier RF. Throughout this

manuscript, we will refer to this dataset as the fresh tissue dataset.

Following common practice (see Section 2), we limited the wave-

number range to the range between 1815 and 950 cm�1 so that each

pixel spectrum is represented as a 450 dimensional vector. In both

datasets, the FFPE as well as the fresh dataset, pixel spectra with

low signal intensity were filtered out and marked as background

based on previously described practice (Kallenbach-Thieltges et al.,

2013; Kuepper et al., 2016). The filtering is performed on uncorrect-

ed raw spectra, so that it does not affect our approach being inde-

pendent from the physical model based resonant Mie correction.

The datasets were divided into a pre-training set, a training set

for supervised finetuning and validation dataset. The pre-training

set for training the autoencoders involves 2.2 million spectra from

the FFPE dataset CO722 covering spectra from 25 tissue microarray

spots from 25 spots from 10 different patients. For the finetuning

set, a subregion of 1.3 million spectra (20 spots, 16 different

patients) from dataset CO1002b was selected. Validation was con-

ducted on 3.51 million spectra from 24 spots (22 different patients)

from dataset CO1002b.

4.2 Obtaining ground truth segmentations
In order to obtain uncorrected spectra with labels for supervised

training, we applied classifier RF which was previously established

in (Kuepper et al., 2016) to all resonant Mie corrected spectra from

the FFPE dataset. Mie correction was performed on the wavenum-

ber region 2300–950 cm–1 using the approach from (Bassan et al.,

2010) using one iteration. Since the uncorrected counterpart is im-

mediately available for each corrected pixel spectrum, this allowed

us to assign a class to each uncorrected spectrum. As illustrated in

Figure 2, we use the resulting assignment between uncorrected spec-

tra and tissue components as ground truth for the training dataset

for our deep neural networks. Note that the classification outcome

of RF cannot be assumed to be 100% correct on a per-pixel basis

and the assignment thus obtained constitutes a gold standard in the

sense of the best-possible per-pixel annotation rather than a ground

truth. Despite this somewhat curtailing factor, we will refer to the

training labels obtained from RF as ground truth.

4.3 Learning regularized representations through

autoencoders
Formally, an autoencoder is constituted by a neural network that rep-

resents a mapping A : Rd ! R
d, i.e. a network whose input and output

layers consist of d neurons each. In its most basic form, an autoencoder

involves one hidden layer with M<d neurons. A sequence of

ðd;M1Þ; ðM1;M2Þ; . . . ; ðMK�1;MKÞ autoencoders can be cascaded in a

straightforward manner as illustrated in Supplementary Figure S2 and

Fig. 2. Workflow for obtaining ground truth results, performing unsupervised pre-training and finally supervised fine-tuning as described in Section 3
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detailed in Supplementary Section S.1. In (Vincent et al., 2010), such

stacked autoencoders have been proposed and successfully established

as highly effective regularizers on several datasets.

Our stacked autoencoder preprocesses spectra represented as a

vector featuring absorbances at d¼450 wavenumbers. The stacked

autoencoder involved six hidden layers of sizes M1; . . . ;M6 ¼
450;900; 450; 100;100; 100. The stacked autoencoder was trained

in an unsupervised fashion following (Vincent et al., 2008) on 2 220

000 spectra obtained from 25 spots of TMA slide CO1002b. Each

autoencoder was initialized following (Glorot and Bengio, 2010).

For training autoencoders, mean squared error with an additive

regularization term was used as loss function, as detailed in

Supplementary Section S.1.

4.4 Supervised finetuning for classification of pixel

spectra
We followed the approach by Rifai et al. (2011) and employed the

autoencoder described in Section 4 as an unsupervised pretraining

procedure to improve a subsequent supervised learning step. To this

end, a softmax output layer with one output neuron for each of the

19 classes was added to the six encoding layers of the stacked autoen-

coder. The resulting network topology was initialized with the param-

eters of the stacked autoencoder for the first six layers, and random

values for the input weights of the output layer. The last three hidden

layers were treated as drop out layers (Srivastava et al., 2014) with a

drop out rate of 50%. This network was trained on the ground truth

provided by classifier RF as shown in Figure 2 to obtain supervised

classifier pt-MLP using RMSProp optimization running for 15 000

epochs using categorical cross entropy as a loss function.

As a reference to assess the performance of pt-MLP, we trained a

conventional multilayer perceptron MLP based on the same top-

ology as network pt-MLP. As in classifier pt-MLP, the last three hid-

den layers were implemented as drop out layers with a dropout rate

of 50%. We initialized all parameters in the network randomly and

trained it against the same ground truth using RMSprop for opti-

mization running 15 000 iterations, also using categorical cross en-

tropy as a loss function.

4.5 Transfer learning for domain adaptation
In order to assess the generalization capability of the unsupervised

pretraining procedure and the resulting classifier pt-MLP, we per-

formed transfer learning from FFPE to fresh tissue samples. Ground

truth on fresh tissue for transfer learning was obtained from a previ-

ously established classifier RF2, which was trained on resonant Mie

corrected spectra in fresh tissue. To adapt to the different classes of

tissue components annotated in FFPE versus fresh tissue (see

Supplementary Fig. S3), the output layer was substituted by a ran-

domly initialized softmax layer. The transfer learning approach is

illustrated in Supplementary Figure S5.

We divided dataset Fresh 1 into a training dataset and a test

dataset for transfer learning, and performed 15 000 epochs of

RMSProp training. As the purpose of training tl-MLP is to demon-

strate the generalization capability of a representation learned by pt-

MLP, the region used for training was explicitly chosen to be small

and with limited variability, so that we chose only 1.3 Million spec-

tra (corresponding to roughly 5�5 mm of sample) from only one

single sample.

Datasets Fresh 2–Fresh 7 were used for validation. Determining

accuracies for validation neglects spectra that were masked out as

background in the ground truth annotation, as detailed in

Supplementary Section S.2.

5 Results

5.1 Pretraining with SCAE and supervised finetuning
We performed pretraining as described in Section 4 on 2.2 million

spectra from the FFPE dataset CO722. The deep learning classifier

pt-MLP was obtained by finetuning as described in Section 4 on 1.3

million spectra from dataset CO1002b.

Figure 3 demonstrates the generalization capability on a held-

back TMA dataset. The per-pixel accuracy of classifier pt-MLP

reconstructing the ground truth segmentation of classifier RF

achieved a validation accuracy of 96% (83% after not counting the

highly abundant background class, see Supplementary Figs S10–

S12), while the test accuracy during training was 93%. The unex-

pected gain in accuracy between test and validation dataset may be

explained by the heterogeneous sample quality of the TMA samples.

Switching the pretraining from a stacked contractive autoencoder to

a plain stacked autoencoder by dropping the regularizing term of

Frobenius norm of the Jacobi matrix during training, the validation

accuracy dropped slightly to 95%, while the training accuracy

dropped to 90%. In other words, using the gap between the accura-

cies of training set and validation as an indicator of the generaliza-

tion error, the stacked contractive autoencoder achieves a lower

generalization error than the plain stacked autoencoder.

The accuracy of pt-MLP compares to a slightly lower accuracy

of 94% when training a network with the same topology on reson-

ant Mie corrected data using backpropagation in the same manner

as MLP was trained on uncorrected data. For the accuracies of 96

Fig. 3. Classification of FTIR raw data of two FFPE-embedded Tissue

Microarray spots (TMA) from the fully independent validation dataset. The

agreement between the pre-trained pt-MLP (first row) and the ground truth

provided by RF (middle row) is very high, and differences recognizable only

in small details. The non-pretrained classifier MLP, on the other hand, exhib-

its systematic misclassification, which is most notably of crypts in the tumor-

free spot (right, index color pink) and the tumor and the submucosa class (red

and green), which are systematically misclassified as muscle (white) in the

tumor spot (left). Classification results of further spots are displayed in

Supplementary Figure S4
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and 94%, it must be kept in mind that the ground truth of classifier

RF will not be perfect. To assess this further in a qualitative manner,

we inspected the segmentations of a spot that according to annota-

tion is free of cancer, as shown in Supplementary Figure S9. As it

turns out, pt-MLP recognizes less false-positive tumor positions in

this spot than the ground-truth classifier RF. This indicates that

even higher accuracies will not be plausible without overfitting to

imperfect ground truth.

5.2 Transfer-learning segmentations of fresh tissue
To assess the transferability of classifiers from FFPE tissue to fresh

tissue, we first visualized spectral differences between FFPE tissue

and fresh tissue, which is illustrated for two classes of tissue compo-

nents in Supplementary Figure S1. In particular at the level of uncor-

rected raw spectra, these differences are substantial, so that applying

classifiers trained on FFPE spectra to fresh tissue can be expected to

lead to very limited success. To examine this in practice, we applied

the FFPE-trained classifier pt-MLP to fresh tissue. As ground truth,

we used the segmentation obtained from a previously established

random forest classifier RF2. As shown in Figure 4, pt-MLP per-

forms poorly in identifying the tissue structure, achieving an accur-

acy of only 53%. Two classes, namely submucosa and muscle, were

at least partially detected correctly by pt-MLP.

Finally, we performed transfer learning from FFPE tissue spectra to

fresh tissue spectra by training classifier tl-MLP using pt-MLP as a

starting point. As training data for transfer learning, we used uncor-

rected fresh tissue spectra labeled with the output classifier RF2 as

ground truth, as illustrated in Supplementary Figure S5. A validation

of the result is shown in Figure 4 and Supplementary Figure S6.

Accuracies of validating the transfer learned classifier tl-MLP on five

whole slide images (Supplementary Fig. S13) range between 40 and

76%. For four out of the five validation spots, overall tissue structure

is reconstructed by tl-MLP, although in some cases with systematic

bias. Yet, considering the deliberately low amount of training data and

the fact the accuracies are pixel accuracies in images, it is reasonable to

claim that the overall tissue structure is reconstructed in most cases.

6 Discussion

In our study, we demonstrated that unsupervised pre-training of in-

frared spectra facilitates highly accurate classification of spectral

histopathology imaging data. Unsupervised pre-training takes the

role of spectral pre-processing, which previously has been tackled on

the grounds of physical models in combination with conventional

classifiers. Thus, we have demonstrated that a purely data-driven

approach can take the role that has previously been taken by a phys-

ical model when classifying pixel spectra.

A natural question that arises in this context, and in neural net-

works in general, is to characterize and interpret what the neural

network actually learned. Our results allow the conclusion that the

network implicitely identified variances that are eliminated by cor-

rection procedure underlying the resonant Mie model by Bassan

et al. (2010), because classifier pt-MLP can reproduce the classifica-

tion of resonant Mie corrected spectra. This is remarkable since this

implies that the network has learned to disentangle the complex

interference between molecular spectrum and the scattering back-

ground signal, which is neither additive nor linear. It will be worth-

while to assess our approach in comparison to recent improvements

of resonant Mie correction Konevskikh et al. (2018).

Since the resonant Mie model is neither explicitly nor implicitly

involved in the procedure of training the network, the question

arises whether the network may have learned a much more general

representation of infrared pixel spectra from histopathological sam-

ples. While beyond the scope of our current contribution, this ques-

tion of model interpretation points to an interesting and relevant

new direction for future research, namely to correlate the output of

the stacked autoencoder with different physical model-based correc-

tion procedures. More specifically, one could investigate how well a

spectrum corrected by a physical model can be reconstructed from

the representation learned by the neural network. This could be real-

ized by establishing a neural network that learns to approximate a

given correction procedure, using the representation learned by the

unsupervised pre-training as a starting point. If such a network

could reconstruct the result of given physical model-based prepro-

cessing procedure, one would obtain a more explicit proof that the

network has learned a certain preprocessing function.

In general, the features learned by the stacked autoencoder and

the subsequent finetuned classifier remain a black box which calls

for being understood better. This model interpretation problem is

particularly relevant to understand whether the classifier uses infor-

mation rather equivalent to the information used in resonant Mie

corrected spectra, or whether scattering information is being used

that has been removed in resonant Mie corrected spectra. However,

Fig. 4. Classification of FTIR raw data with and without transfer learning on independent validation dataset Fresh 2. Left: ground truth obtained from classifier RF2 on

Mie-scattering corrected FTIR-microspectroscopy imaging; Middle: prediction obtained from the FFPE-based classifier pt-MLP, which fails to identify most of the tis-

sue components in fresh tissue and achieves an accuracy of only 53%. Right: prediction of the transfer learned deep learning classifier tl-MLP. Results for dataset

Fresh 3 are shown in Supplementary Figure S6
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this will require suitable approaches for model interpretation. While

an abundant list of approaches such as saliency maps (Simonyan

et al., 2013) or class activation maps (Zhou et al., 2016) have been

proposed for CNNs, they rely on topological features of CNNs such

as max pooling layers which are not applicable to the fully con-

nected networks presented in this work, so that the interpretation of

our trained networks remains an open issue. To at least gain some

basic insight into the learned models, Supplementary Figure S8 visu-

alizes the weight matrices at the six hidden layers of the trained net-

works, indicating a strong effect of both the finetuning and the

transfer learning on the weights in the network.

As we have argued, there is strong evidence that the stacked

autoencoder did learn a meaningful representation of infrared pixel

spectra. An obvious next question is how far this representation will

generalize: how much variance can be added and what type of vari-

ance can be added before networks derived from the representation

will lose their classification capability. Our approach to determine

generalization capability was to investigate the capability of the net-

work to perform domain adaptation: If the network can adapt from

the domain of embedded tissue to the domain fresh tissue, the under-

lying representation must be sufficiently abstract and thus generaliz-

able. The high accuracies we observe in the transfer learned

networks for fresh tissue strongly indicate that indeed the represen-

tation is sufficiently general. It is quite remarkable that despite the

moderate effort used for transfer learning—we used the same num-

ber of epochs for transfer learning tl-MLP as for fine-tuning the ori-

ginal network pt-MLP while the last hidden layer of tl-MLP had to

be fully re-initialized due to the differences in ground truth classes—

we obtain very high accuracies.

As the generalization capability is strong enough to adapt an

FFPE classifier to fresh tissue, the question emerges how strongly the

network will generalize. There is a broad bandwidth of conceivable

sources of variance over which it is desirable to obtain a general

spectral representation: Besides the variation in tissue type (FFPE

versus fresh) investigated here, there may be variation in the type of

microscope (FTIR versus QCL), variation in the substrate, or vari-

ation in the organ of origin (colon versus tissue form other organs),

to mention only a few. A key question to be addressed will be which

variation needs to be included in the data for pre-training the

stacked autoencoder, and to which variation will the resulting net-

work be capable of generalizing. As we have shown in our work,

not all variation needs to be reflected in the pre-training data:

Although we did not use any fresh tissue for pre-training, the net-

work turned out to be transferable to fresh tissue anyway. An ultim-

ate goal may be to train an universal preprocessing network that

generalizes broadly across the aforementioned sources of variance.

We limit our claims of the pre-training performed in the present

study for the network to generalize across tissue type, i.e. across

FFPE and fresh tissue. This constitutes a major progress over the

previously employed physical model based preprocessing, whose

generalization capabilities are inherently limited if present at all.

Finally, generalization capability of classifiers against different

sources of variance certainly is a key aspect for robust classifiers in

life science research in general, and biomarker discovery in particular.

As our approach to combine representation learning with domain

adaptation involves no assumptions specific to infrared microscopy,

this observation bears promise well beyond infrared microscopy. In

fact, baseline correction or other forms of preprocessing commonly

constitute problems in the analysis of various types of bioanalytical

data, ranging from NMR spectroscopy (Xi and Rocke, 2008), mass

spectrometry (Du et al., 2006) or Raman spectroscopy (Zhang et al.,

2010). While several different approaches have been proposed for

these techniques, it has been commonly observed that preprocessing,

in some cases heavily, affects subsequent analysis (Du et al., 2006).

On the other hand, the baseline artifacts in other bioanalytical spectra

tend to be less complex than resonant Mie scattering in infrared spec-

tra, and it thus appears reasonable to assume that other types of bioa-

nalytical data can greatly benefit from our purely data-driven

unsupervised preprocessing approach using stacked autoencoders.

7 Conclusion

We have tackled and successfully solved two related problems in

spectral histopathology that have not been studied previously, likely

because they could not be solved with conventional classifiers: First,

we demonstrated that unsupervised pre-training allows to train clas-

sifiers that can classify unprocessed raw pixel spectra of infrared

microscopic images, and thus may substitute the physical model

based preprocessing of infrared image spectra. At the same time,

these classifiers are well-established regularizers and thus hold the

promise of generalizing stronger and having less tendency towards

overfitting. Second, we have introduced the concept of transferring

across domains of different tissue preparation as a method to assess

whether a classifiers generalizes well or will rather tend to overfit

the given training data.
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