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ABSTRACT: We here report on nonequilibrium targeted
molecular dynamics simulations as a tool for the estimation of
protein−ligand unbinding kinetics. Correlating simulations
with experimental data from SPR kinetics measurements and
X-ray crystallography on two small molecule compound
libraries bound to the N-terminal domain of the chaperone
Hsp90, we show that the mean nonequilibrium work
computed in an ensemble of trajectories of enforced ligand
unbinding is a promising predictor for ligand unbinding rates.
We furthermore investigate the molecular basis determining
unbinding rates within the compound libraries. We propose ligand conformational changes and protein−ligand nonbonded
interactions to impact on unbinding rates. Ligands may remain longer at the protein if they exhibit strong electrostatic and/or
van der Waals interactions with the target. In the case of ligands with a rigid chemical scaffold that exhibit longer residence
times, transient electrostatic interactions with the protein appear to facilitate unbinding. Our results imply that understanding
the unbinding pathway and the protein−ligand interactions along this path is crucial for the prediction of small molecule ligands
with defined unbinding kinetics.

■ INTRODUCTION

While rational drug design traditionally focuses on the
optimization of binding affinity of compounds to target
proteins, optimization of target binding kinetics is emerging
as a new paradigm in drug discovery.1−7 Often, drugs with
optimized binding kinetics exhibit better efficacy profiles and
reduced off-target toxicity,1,8 and thus are more likely to pass
later clinical phases.9 However, while the prerequisites for the
rational design of high affinity drugs are well investigated,10 the
rational optimization of kinetic parameters of small molecules
is in its early stages.11,12 Molecular determinants believed to be
important for the modulation of binding kinetics include ligand
molecular size, hydrophobic effects, electrostatic interactions,
and conformational fluctuations.4,11 Recent reports further
highlight the importance of protein-bound water molecules12

and of protein internal electrostatic interactions.13 However,
the exact contribution and extent of each of these properties
still needs to be further elucidated.

In order to gain a systematic understanding of the impact of
different molecular discriminants on binding kinetics, and thus
help to establish a knowledge basis necessary for the rational
design of compounds with desired kinetics, we performed a
combined experimental and theoretical analysis on the
dynamics of unbinding of two series of compounds with
different chemical scaffolds (see Figure 1) bound to the ATP-
binding N-terminal domain of the chaperone heat shock
protein 90 (Hsp90, Figure 1C),14−16 which is a well-known
target for anticancer drugs.14,17−19 On the basis of data shared
within the Kinetics for Drug Discovery consortium (K4DD,
www.k4dd.eu)7,20,21 and pre-existing data sets,19,22,23 we
included a total of 26 compounds in the present analysis,
which are listed in Table 1. Additionally, we determined by X-
ray crystallography the structures of one further protein−ligand
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complex (see Tables 1 and S2) and measured ligand binding
kinetics and affinities of three further compounds via surface
plasmon resonance (SPR). In detail, we investigated 14
compounds with a resorcinol backbone (compounds 1a−1n,

see Figure 1; among them the Hsp90 inhibitor Ganetespib24

1c), 11 compounds with N-heterocycle functionalities19

(compounds 2a−2k), and the macrocyclic lactam Hsp90
inhibitor 17-DMAG,18 17. Figure 1C displays an overview of

Figure 1. Structure of the N-terminal domain of Hsp90 and of investigated ligand scaffolds. Compound names with two letters denominate
alternative protonation states. (A) Resorcinol compounds (1a−1n) and additional compound 17 (17-DMAG). (B) N-heterocycle series (2a−2k)
with fluorenamide and benzamide scaffolds and additional compounds 2j and 2k. (C) Overview of the N-terminal domain of HSP90 in complex
with compound 1f. Protein in cartoon, compound 1f in sticks, helix 3 in red, alternate loop conformation in yellow.
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the N-terminal domain of Hsp90 with bound compound 1f.
The binding site is located close to the protein surface and
exhibits two different conformations of the adjacent amino
acids 102−114. These residues either form a helix
conformation (helix 3) or a loop conformation, which was
proposed to affect unbinding kinetics.7

To assess the molecular mechanisms of unbinding in Hsp90,
we performed nonequilibrium targeted molecular dynamics
(TMD) simulations.26−29 This method uses a constant velocity
constraint as an additional force fc in the simulations to push
the ligand out of the binding site. fc is calculated via a Lagrange
multiplier with regards to a center of mass (COM) and is
updated each time step to move the ligand to a position that is
in agreement with the preset constant velocity. The constraint
force is applied in such a way that the distance between the

anchor group COM and the ligand COM is increased (see
Figure S1). The distance vector acts like a radial vector in a
spherical coordinate system, while the ligand is free to move
and change direction on the surface of the sphere.26 This
leaves the ligand the freedom to perform diffusion
perpendicular to the distance vector, conformational changes,
and rotations. The ligand thus has the possibility to probe
different unbinding pathways, although this choice is limited
by the ratio between constraint velocity and diffusion on the
sphere. We focus our analysis on the contributions to
unbinding kinetics, as unbinding events are easier to calculate
than binding events.30 As we almost exclusively use protein/
ligand crystal structures with positions of protein−internal
water molecules being resolved, we have an excellent structural
basis for carrying out such simulations. As the simulations are

Table 1. List of Compounds, Dynamic Properties, and Protein Conformations of Investigated Compoundsa

compound
ref. for kinetics
and affinity koff/s

−1 KD/M
−1 kon/M

−1 s−1 helix 3 conf. PDB ID with ref.

1a 2 <1.00 × 10−04 <1.00 × 10−09 (n.d.) loop 5NYI20

17 (17-DMAG) 1 3.00 × 10−04 4.57 × 10−09 (n.d.) loop (out) 1OSF22

1b 1 3.30 × 10−04
± 2.1 × 10−05

4.60 × 10−09
± 4.0 × 10−11

2.15 × 1005
± 5.40 × 1004

helix 5J207

1c (Ganetespib) 1 5.70 × 10−04 1.00 × 10−09 (n.d.) loop 3TUH23

1d 1 1.70 × 10−03
± 4.6 × 10−04

2.30 × 10−08
± 4.4 × 10−09

7.00 × 1004
± 7.50 × 1003

helix 5J9X7

1e 1 1.79 × 10−03
± 4.7 × 10−06

3.81 × 10−09
± 3.5 × 10−10

4.72 × 1005
± 4.10 × 1004

helix 5J867

1f 1 4.20 × 10−03
± 5.2 × 10−04

2.40 × 10−08
± 1.0 × 10−09

1.80 × 1005
± 2.50 × 1004

helix modeled from M5

1g 1 6.40 × 10−03
± 4.3 × 10−04

8.70 × 10−08
± 2.1 × 10−09

7.70 × 1004
± 1.20 × 1004

helix 5J2720

1h 1 1.40 × 10−02
± 2.2 × 10−03

2.66 × 10−08
± 2.6 × 10−09

5.20 × 1005
± 1.30 × 1005

loop 5J2X7

1i 1 1.40 × 10−02
± 1.5 × 10−03

4.30 × 10−07
± 6.1 × 10−08

3.30 × 1004
± 1.30 × 1003

helix 5J8620

1j 1 3.38 × 10−02
± 1.13 × 10−03

7.11 × 10−08
± 4.327 × 10−9

4.79 × 1005
± 1.65 × 1004

loop 6FCJ21

1k 2 6.34 × 10−02
± 3.5 × 10−03

5.14 × 10−07
± 6.0 × 10−09

1.23 × 1005
± 5.23 × 1003

loop 6ELO20

1l 2 1.74 × 10−01
± 2.2 × 10−02

2.36 × 10−07
± 1.9 × 10−08

7.42 × 1005
± 1.53 × 1005

helix 6ELP20

1m 1 2.10 × 10−01
± 3.3 × 10−02

1.80 × 10−07
± 1.2 × 10−08

1.20 × 1006
± 2.10 × 1005

loop 5J647

1n 2 2.54 × 10−01
± 1.8 × 10−02

9.00 × 10−07
± 1.7 × 10−08

2.80 × 1005
± 1.47 × 1004

loop 6ELN20

2a (here) 7.10 × 10−05
± 4.0 × 10−06

7.74 × 10−09
± 4.0 × 10−10

(n.d.) helix 2YKC19

2b 2 1.36 × 10−04
± 3.8 × 10−06

8.48 × 10−09
± 6.9 × 10−10

1.62 × 1004
± 1.78 × 1003

helix 5LQ920

2c 2 1.89 × 10−04
± 7.1 × 10−05

4.66 × 10−08
± 2.5 × 10−08

4.77 × 1003
± 1.35 × 1003

helix 5LR720

2d (here) 1.94 × 10−04
± 9.0 × 10−06

1.01 × 10−08
± 5.0 × 10−10

(n.d.) helix 5LRL (here)

2e 2 2.78 × 10−04
± 4.65 × 10−06

1.72 × 10−07
± 1.2 × 10−07

3.06 × 1003
± 2.09 × 1003

helix 5LRZ20

2f 2 2.85 × 10−04
± 4.9 × 10−05

3.61 × 10−08
± 5.7 × 10−09

7.77 × 1003
± 1.48 × 1002

helix 2YKI19

2g 2 4.85 × 10−04
± 1.39 × 10−04

3.95 × 10−09
± 1.7 × 10−09

1.33 × 1005
± 2.37 × 1004

helix 5LS120

2h 2 7.65 × 10−04
± 5.0 × 10−05

2.40 × 10−10
± 8.9 × 10−11

3.58 × 1006
± 1.11 × 1006

helix 5T2120

2i 2 9.89 × 10−04
± 1.3 × 10−04

9.50 × 10−08
± 4.5 × 10−09

1.04 × 1004
± 9.04 × 1002

helix 2YKJ19

2j (here) 3.697 × 10−03
± 1.5 × 10−05

3.285 × 10−8
± 5.61 × 10−9

1.17 × 1005
± 1.4 × 1004

helix 5LO125

2k 2 2.56 × 10−02
± 1.4 × 10−02

2.47 × 10−08
± 6.5 × 10−09

1.26 × 1006
± 8.78 × 1005

helix 5LR120

aError bars denote the standard error of the mean (SEM) for N = 2−4 measurements. n.d.: not determined.
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carried out under nonequilibrium conditions, i.e., nonsta-
tionary with a finite time and velocity, we do not obtain the
free energy along the pulling coordinate but a nonequilibrium
work <W>. According to the second law of thermodynamics,
ΔG ≤ W due to W containing irreversible work caused by
dissipation, i.e., friction effects. We find that this non-
equilibrium variable is a better predictor for unbinding kinetics
than free energy profiles derived from stationary free energy
calculations.

■ METHODS
Chemistry and Analytical Data of 1j and 2j.

Information on the synthesis of chemical compound 1j is
provided in refs 7 and 20 and on 2j in ref 25 and their
analytical data in Table S1. LC/MS spectra of the products
were recorded on an Agilent 1100 HPLC system (1100 high
pressure gradient pump, 1100 diode array detector) interfaced
to an Agilent 1100 mass spectrometer detector using a
Chromolith SpeedROD RP 18e50−4.6 column. Polar
gradient: Water (0.05% HCOOH) and acetonitrile (0.04%
HCOOH) were used as eluent in mixtures as follows: 0 min,
4% ACN; 2.8 min, 100% ACN; 3.3 min, 100% ACN; gradient,
5.5 min; flow rate, 2.4 mL/min; UV detection, 220 nm. 1H
NMR spectra were recorded at 300 K unless otherwise
specified using a Bruker Avance DPX 300, AV 400, and DPX
500 spectrometer (TMS as an internal standard). 1H NMR
chemical shifts are reported in parts per million (ppm). 1H
NMR data are reported as chemical shifts (dH), relative
integral, multiplicity (s = singlet, d = doublet, t = triplet, q =
quartet, dd = doublet of doublets, ddd = doublet of doublet of
doublets, dt = doublet of triplets, td = triplet of doublets, tt =
triplet of triplets, qd = quartet of doublets), and coupling
constant (J Hz). Both compounds have a purity ≥ 95%.
Information on the synthesis of chemical compounds 1a−1i

and 1k−1n can be found in patent WO2006087077 and in refs
7, 20, and 25; for compounds 2a−2f and 2i in published patent
app l i c a t i on s WO2010106290 , WO2006123061 ,
WO2008049994, and ref 19; for compounds 2g and 2h in
patent WO2006091963; and for 2k in patent WO2005028434.
Crystallization and Structure Determination for

Compound 2d. A hexa-histidine tagged N-terminal fragment
of Hsp90 (18−223) (NP_005339) was expressed and purified
as described in ref 20. Crystallization conditions are also
described in ref 20. Data sets were collected in-house on a
Rigaku HF-007 rotating anode generator and a MAR CCD
detector and in the synchrotron. Diffraction data were
processed with either XDS31 or MOSFLM.32 The structures
were solved by the molecular replacement method using one
set of coordinates of N-terminal Hsp90 available in the Protein
Data Bank (PDB code: 1YER). The structures were refined
using either CNX7,33 REFMAC5,34 or BUSTER8 program
packages.35 Ligands were placed manually, and the structural
models were manually rebuilt using either TURBO-FRODO
(www.afmb.univ-mrs.fr/-TURBO) or COOT9.36 Final vali-
dation checks were performed using MOLPROBITY.37

Surface Plasmon Resonance (SPR) of Compounds 2a,
2d, and 2j. SPR measurements were performed on a Biacore
4000 instrument from GE Healthcare as previously described
in refs 7 and 20. Briefly, recombinant N-terminal Hsp90 with
17-desmethoxy-17-N,N-dimethylaminoethylamino-geldanamy-
cin (17-DMAG, Merck Millipore) was immobilized on a
Biacore CM5 chip at 25 °C at a flow rate of 10 μL/min using
amine coupling at pH 4.50 according to Biacore’s standard

protocol. HBS-N (10 mM Hepes pH 7.40, 0.15 M NaCl)
served as the running buffer during immobilization, and all
SPR binding kinetics measurement assays were performed in
20 mM HEPES at pH 7.50, 150 mM NaCl, 0.05% Tween 20, 1
mM DTT, 0.1 mM EDTA, and 2% DMSO. Data sets were
processed and analyzed using the Biacore 4000 Evaluation
software, version 1.1. Solvent corrected and double-referenced
association and dissociation phase data were fitted to a simple
1:1 interaction model with mass transport limitations.

Simulation Setup. TMD calculations were performed with
Gromacs v4.6.5 (ref 38) using the AMBER99SB force field39,40

for protein and ions and the TIP3P water model.41 Crystal
structures for compounds 17 and 1c were taken from PDB IDs
1OSF22 and 3TUH,23 respectively. Structures of compounds
2a, 2f, and 2i were taken from PDB IDs 2YKC, 2YKI, and
2YKJ.19 Due to their high similarity, the structure of
compound 1f was modeled based on the 1d protein−ligand
complex by removing a single terminal methyl group of the
respective butenyl side chain. The initial structure of
compound 2d was taken from the structure published herein.
Crystal structures of all other compounds were determined
within the Kinetics for Drug Discovery consortium and are
published in refs 7, 20, and 21 (see Table 1). Ligand
parameters were created with antechamber42 and acpype43

using GAFF parameters44 and AM1-BCC charges.45,46

Protein/ligand crystal structures together with present crystal
water molecules were centered in a cubic box with 7 nm side
lengths, missing protons added, protonated, solvated, and
sodium ions added to ensure a charge neutral simulation box.
Protonation states of amino acids were determined by
propka.47 Protonation states of ligands were determined
based on pKa values predicted using Chemicalize48 developed
by ChemAxon (http://www.chemaxon.com). Besides predic-
tion of protonation states for pH = 7.5, we checked at which
pH the ligand exhibits a 10% population of alternative
protonated states.

TMD Calculations. Simulations were carried out with
PME49 for electrostatics (minimal real space cutoff of 1 nm)
and a van der Waals cutoff of 1 nm. Hydrogen atom bonds
were constrained via the LINCS50 algorithm. The prepared
systems were first minimized with the conjugate gradient
method and subjected to short equilibration runs in the NPT
ensemble at 300 K and 1 bar, using the Berendsen thermostat
and barostat,51 with an integration step size of 2 fs and a
trajectory length of 100 ps. For each ligand, 30 statistically
independent equilibration runs were performed, in which
differed velocity distributions were attributed to the minimized
systems to generate an initial equilibrium state ensemble.
Nonequilibrium TMD calculations using the Gromacs PULL
code in constraint mode were then carried out by continuing
the 30 independent equilibration runs for 200 ps in the NPT
ensemble at 300 K and 1 bar, using the Nose−́Hoover
thermostat52,53 and Parrinello−Rahman barostat,54 with a fixed
constraint velocity of 0.01 nm/ps and an integration step size
of 1 fs. Constraint pseudoforces were written out for each time
step. The first reference group for COM pulling along path 1
consisted of all C(alpha) atoms of the beta-sheet forming the
ligand binding site (see Figure S1) and of all C(alpha) atoms
of helix 1 for path 2; the second group was formed by the
ligand heavy atoms. Integrating fc along the pathway as

∫= ′ ′W x f x x( ) ( ) d
x

x

c
0 (1)
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yields the nonequilibrium work W performed to remove the
ligand. In our simulations, we obtain a resolution of 10 fm
along x and calculate W via trapezoidal numeric integration.
Trajectory evaluation was then carried out with Gromacs tools
and data evaluation in Python using numpy and scipy
libraries55 and Jupyter notebooks.56

Stationary thermodynamic integration57 simulations were
performed by extracting 21 equidistant snapshots from random
nonequilibrium simulations and carrying out equilibration
simulations of 10 ns trajectory length with them, setting the
constraint velocity to zero (for a detailed explanation, see ref
28). Mean constraint pseudoforces ⟨fc⟩ were calculated from
the last 2.5 ns of these simulations. Free energy profiles as
given in Figure S2A were then calculated by integrating the
mean forces along the distance from the binding site x as

∫ ∑Δ = ⟨ ′ ⟩ ′ ≈ ⟨ ⟩ΔG x f x x f x( ) ( ) d
x

x

i

N

ic c,

x

0 (2)

with Nx being the number of steps between x0 and x and Δx
the distance between snapshots.
Error Calculation. For experimental results, we calculated

errors as standard error of the mean (SEM) σΔ =x N/ with
standard deviation σ and number of experiments N. To
calculate the errors of theoretical results, we used random
sampling bootstrapping with replacement as implemented in
the Python scikit-learn library,58 using 10 000 iterations. To
keep comparability with the experimental SEM,59 the displayed
error bars represent the 1σ confidence level.

■ RESULTS AND DISCUSSION
A Linear Nonequilibrium Energy Relationship for

Unbinding Kinetics. At the beginning of our investigations,
we attempted to characterize ligand unbinding kinetics of
Hsp90 ligands by determining their free energy profile along
the unbinding pathway via standard stationary thermodynamic
integration57 (TI) calculations. The most probable unbinding
pathway for the ligand appeared to be the passage through an
opening between helices 1 and 3 (pathway 1 in Figure S1).
Figure S2A displays the resulting free energy surface for
compounds 1b, 1g, and 1l, which is in good general agreement
with free energy curves for other Hsp90 binding ligands
obtained by umbrella sampling.25 The three investigated
compounds exhibit 1−2 free energy barriers between the
ligand bound and unbound state. Interpreting the shape and
peak height by means of the Eyring equation60 for rate
constants

κ β= − Δ ⧧k Gexp( )off (3)

with the friction-dependent prefactor κ, the inverse temper-
ature β = 1/RT and the free energy difference between bound
state and unbinding transition state ΔG⧧, we find that 1l
effectively does not exhibit a barrier, but a slope between
bound and unbound state, and consequently should be the
fastest unbinding of the three test compounds. Compounds 1b
and 1g exhibit a comparable transition barrier of ca. 65 kJ/mol
and both a second small barrier at 1.8 nm. Compounds 1b and
1g should therefore unbind equally fast, which does not agree
with the experimental results (see Table 1). Apparently, ΔG⧧ is
not sufficient as a descriptor for predicting unbinding kinetics
and would require taking into account the prefactor κ in eq 3,
which according to Kramers includes friction effects.61 A
further problem we faced when applying stationary TI

calculations was the large number of necessary equilibration
points along the unbinding pathway that need several
nanoseconds of equilibration for reliable determination of
the free energy surface,29 significantly raising the computa-
tional cost for investigating a large set of compounds.
Furthermore, in our two investigated compound groups,
about half of all compounds exhibit two possible protonation
states (1a, 17, 1j, and the full series 2). As an example, the
morpholine side chain in 1aa can exist in a protonated state
with a charge of +1e (see Figure 1A) or in a deprotonated state
1a with a charge of 0e. All ligands in compound group 2 are
bound to the protein by a hydrogen bond between nitrogen
atoms in aromatic rings (pKa range of ca. 1.5−5) and Asp93
(see Figure S3) or via highly polarized water molecules
mediating this contact.62 Assigning the correct protonation
state for such protein−ligand−water complexes is a challenging
task, as the protein environment can significantly alter pKa
values.62,63 To avoid a bias from wrongly chosen charge states,
we needed a method that allowed us to carry out simulations
of multiple compounds in 2−3 possible protonation states,
with TI calculations simply being too inefficient for this task.
Surprisingly, when we looked at the mean nonequilibrium

work profiles <W> from simulations necessary to generate start
coordinates for TI calculations (see Figure S2B), we found that
the difference in <W> during simulations qualitatively matches
the order of unbinding constants of compounds 1b, 1g, and 1l.
Apparently, taking account of dissipation effects improves the
quality of the prediction of unbinding constants over TI
calculations. Differences in <W> between compounds (Figure
S2C) appear at positions where the ΔG curve from TI exhibits
local maxima. Furthermore, <W> converges rapidly within
already N = 30 independent trajectories (see Figure S4). We
thus evaluated a possible correlation between nonequilibrium
TMD work <W> and experimentally determined koff constants
using the full investigated compound set comprising all
possible protonation states, as displayed in Figure S5A. As in
the case with compounds 1b, 1g, and 1l, we observe a
qualitative agreement between <W> and ln koff that appears to
follow a linear dependency, with ligands requiring a large <W>
being slowly unbinding compounds. Such a linear dependence
can be expected for equilibrium ΔG⧧ in the form of a linear
free energy relationship64 but is surprisingly present in our
nonequilibrium work, as well. The Jarzynski equality65

connects these two quantities as

β β− Δ = ⟨ − ⟩Wexp( G) exp( ) (4)

where <...> denotes the expectation value of nonequilibrium
trajectories based on Boltzmann distribution weights of their
initial equilibrium start configurations.66,67 Following the “fast
growth” approach of Hendrix and Jarzynski,68 the expectation
value can be calculated as an arithmetic mean

∑β β⟨ − ⟩ ≈ −W
N

Wexp( )
1

exp( )
i

N

i
(5)

of the individual values Wi from N nonequilibrium simulations
starting from a representative sample of Boltzmann-distributed
equilibrium structures. The equality 4 can be recast by a
cumulant expansion into

Δ = ⟨ ⟩ −G W Wdiss (6)

with dissipative work Wdiss, which contains the second and all
higher moments.69 After an increase of <W> at transition
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states ΔG⧧ (cf. Figure S3B,C), we do not observe system
relaxation after crossing over the transition states. We thus
postulate that

Δ ≈ ⟨ ⟩ −≠G W Wdiss (7)

Introducing eq 7 in eq 3, we obtain

β⟨ ⟩ = − +−W k Cln1
off (8)

with C = β−1 ln κ + Wdiss, which serves as a basis of
understanding the apparent linear nonequilibrium energy
relationship. C effectively is a function of β but in the
following is treated as an independent fit factor, as we
otherwise encountered instabilities in nonlinear curve fitting.
In the following, we approximate C to be constant, which is
only valid in the case that the friction during unbinding is the
same for all ligands.
We proceeded carrying out TMD simulations in strict

nonequilibrium with the full compound groups 1 and 2, with
protonation states chosen according to pKa predictions (cf.
Tables 1 and 2 and Figure 1 for an overview of all employed
ligand structures), and used the resulting mean work <W> as
unbinding scores for koff.

28 Fitting theoretical and experimental
results to eq 8, Figure 2A displays Pearson’s correlation
coefficient R2 for the full data set and different divisions into
physiochemically relevant ligand groups resolved for the full
range of pulling distances x. As can be seen, fitting the
complete set of ligands leads to a maximal R2 directly after the
transition state region, which is in line with our assumption
underlying eq 7 that the nonequilibrium work is proportional
to the transition state free energy. Interestingly, we observe
that for group 1, R2 is maximal at 2 nm, and the later increase

in R2 around 1.5−2.0 nm coincides with the presence of
additional small barriers in the thermodynamic integration
calculations (see Figure S2A). We thus focus on an analysis of
the given data set at x = 2.0 nm.
Fitting eq 7 to the full data set on nonequilibrium works

<W> as displayed in Figure S5A, we yield a low R2 = 0.45. It
appears that for the full set of compounds, assuming C in eq 5
to be constant is not a good approximation. We thus searched
for physicochemically reasonable categories to group ligands
according to comparable dissipative work. On the basis of
differences in helix−ligand and loop−ligand contact dynam-
ics,70 we separated the compounds according to helix- and
loop-binding compounds (see Figure S5B), resulting in an
improved R2 = 0.55 for loop-binding compounds, but at an
expense of R2 = 0.29 for helix-binding compounds. We further
separated the sets according to protein conformations into
compound sets 1 (only taking resorcinol scaffolds into
account) and 2 as displayed in Figure 2B. In the case of
group 1 compounds, this improved the R2 = 0.80 but led to a
low R2 = 0.45 for loop-binding compounds. Series 2 does not
experience the split, as all contained compounds bind to the
helix conformation. Fitting eq 5 to this series however resulted
only in a low R2 = 0.45. While group 2 compounds are all
predicted to be deprotonated, i.e., carry no net charge, we
alternatively calculated the correlation coefficient for structures
that carry a proton close to Asp93 as a test. Interestingly, this
fit improved the agreement between experimental results and
our theoretical model to a moderate R2 = 0.59. Overall, it
seems that a high <W> correlates with a small koff.
To assess if <W> (TMD) is a suitable score for ranking

ligands according to their koff, we calculated receiver operating

Table 2. Computational Results for Mean Work <W>, Predicted pKa Values of Investigated Compounds, and pH at Which the
Alternate Protonation State Forms 10% of the Ligands Ensemblea

compound <W>/kJ/mol pKa pH for 10% ensemble presence

1a, 1aa 515.2 ± 14.6, 527.8 ± 15.3 8.0 7.1, dominant form
17 (17-DMAG), 17a 558.8 ± 10.2, 591.4 ± 12.2 9.8 8.8, dominant form
1b 577.6 ± 10.8
1c (Ganetespib) 473.0 ± 10.4
1d 511.9 ± 17.8
1e 559.2 ± 13.3
1f 534.8 ± 10.8
1g 529.0 ± 18.0
1h 444.4 ± 16.3
1i 486.9 ± 13.6
1j, 1ja 344.4 ± 12.5, 370.8 ± 15.3 4.2 dominant form, 5.2
1k 444.3 ± 13.6
1l 463.2 ± 9.5
1m 416.3 ± 11.7
1n 440.4 ± 9.5
2a, 2aa 549.6 ± 18.7, 507.4 ± 15.0 3.5 dominant form, 4.2
2b, 2ba 610.7 ± 16.6, 683.5 ± 24.3 2.9 dominant form, 3.6
2c, 2ca 652.1 ± 21.8, 541.6 ± 12.3 1.8 dominant form, 2.8
2d, 2da 560.3 ± 13.1, 633.3 ± 18.4 1.6 dominant form, 2.3
2e, 2ea 518.0 ± 12.6, 623.1 ± 18.5 2.6 dominant form, 3.5
2f, 2fa 616.4 ± 17.9, 541.9 ± 14.7 1.9 dominant form, 2.6
2g, 2ga 448.4 ± 10.0, 478.0 ± 13.7 3.1 dominant form, 4.0
2h, 2ha 442.5 ± 9.3, 483.5 ± 12.7 3.1 dominant form, 4.0
2i, 2ia 555.4 ± 13.2, 504.7 ± 12.6 4.8 dominant form, 5.9
2j, 2ja 386.7 ± 11.1, 343.1 ± 8.6 2.5 dominant form, 3.3
2k, 2ka 415.3 ± 9.8, 352.6 ± 12.2 3.5 dominant form, 4.2

aDominant form denotes the protonation state at pH = 7.5. Error bars indicate the 1σ confidence interval from bootstrap analysis (see Methods).
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characteristic (ROC)-like curves in Figure 2C characterized by
the respective area under curve (AUC) for the given data
set.71,72 We plot the true positive rate against the top %
according to the experimental koff. Going through the data set
from the highest to lowest koff value, we count a true positive if
the current <W> value is the largest of all ligands that have not
been screened so far. If <W> would be a perfect predictor, the
AUC would be 1, and random order corresponds to an AUC
depending on the exact number of ligands in the investigated
subgroup (AUC = 0.27 for N = 7 in group 1 loop binders and
AUC = 0.13 for all N = 26 compounds, see gray dashed lines in
Figure 2C). While the application to both a full and protein
conformation-separated data set yielded only slight prediction
power (AUC = 0.66−0.78), resorcinol compound 1 after
conformation separation resulted in a moderate to good
prediction of slowly unbinding compounds (AUC = 0.76 for
full group 1, 0.86 for loop compounds, and 0.94 for helix
binding compounds). In this respect, <W> faces similar
problems with scaffold dependency like common affinity
prediction-oriented docking73 but may indeed serve as a
preselection criterion for slow unbinding compounds for
suitable targets and ligands. In the case of compound group 2,
<W> is a bad predictor (AUC = 0.61) for protonation states
following pKa prediction but becomes improved by using the
alternative protonation states (AUC = 0.80). On the basis of

this improvement of both R2 and AUC, we tentatively
formulate the hypothesis that the protonated states in group
2 which are unfavorable at pH = 7.5 might be involved in
determining unbinding rates.
As all the calculations reported above took only unbinding

along path 1 into account, we needed to assess if other possible
unbinding pathways exist. Kokh et al. reported two unbinding
routes for ligands that lead out of the binding site of the Hsp90
N-terminus,20 the first one being path 1 and the second being
found between helix 3 and the central β-sheet (path 2 in Figure
S1). Testing both pathways with 1a and 2a/2aa, we found that
path 1 requires significantly less work for pushing the ligand
into the solvent than path 2 (see Table S3). Furthermore, path
1 leads past Leu107, which has been implicated by point
mutation experiments to affect unbinding kinetics.7 We
therefore judge path 1 to be the correct unbinding path and
path 2 to be irrelevant.

Influence of Protein Conformation and Electrostatics.
As a starting point for investigating molecular effects
influencing unbinding rates, we focused on a dependence on
the helix/loop 3 conformation as implied by our analysis in
Figure 2. In our simulations, helix binding compounds with
decreasing koff display an increasing unbinding <W>. On the
basis of experimental measurements and theoretical calcu-
lations it was proposed that entropic contributions from

Figure 2. Comparison of experimentally derived koff constants and calculated TMD work <W>. Vertical error bars indicate the 1σ level from
bootstrap analysis (see Methods). Horizontal error bars indicate the standard error of the mean (SEM) for N = 2−4 measurements. (A) Pearsons’
correlation coefficient R2 as a function of pulling distance x. Transition state region highlighted in yellow, distance when ligands have left the
binding site in purple. Data on all compounds as dashed black lines, all helix compounds as dashed red lines, all loop compounds as dashed blue
lines. Group 1 compounds as black lines, group 1 helix binders as red lines, group 1 loop binders as blue lines. Group 2 compounds in protonation
states based on pKa predictions as cyan lines, protonated states as orange lines. (B) <W> vs koff plots at x = 2.0 nm. Group 1 helix binders in red,
group 1 loop binders in blue, additional compound 17 in black. Protonation states chosen according to pKa prediction as dots, alternative
protonation states as crosses. Group 2 protonation states chosen according to pKa prediction in cyan, alternative protonation states in orange.
Linear regressions to eq 6 as lines. (C) True positive rate of <W> vs top percent of koff screened curves and area under curve (AUC) for <W> as
predictor for unbinding kinetics. Coloring according to A. Curve corresponding to random order displayed as dashed gray lines for optical
reference.
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protein flexibility play a significant role in the determination of
binding affinities for such compounds.7 While we do not see a
direct connection between <W> and entropic contributions in
our simulations, the increase in nonequilibrium work thus
might be connected with a decreased protein flexibility.
For loop-binding compounds, enthalpic contributions

comprising electrostatic interactions were found to be key
factors in determining koff.

7 As can be seen in Figure 2A and
Table 2, the protonated ligand forms 1aa, 17a, and 1ja result in
a slightly higher <W> than the neutral forms. This finding is
consistent with the structure of the protein/ligand complexes,
e.g., as the resulting ammonium moiety in 17a is found close to
Asp54 (see Figure S6), allowing the formation of a salt bridge
(N−O distances of 2.8 Å). In the case of compound 1aa, <W>
of 1a is within the error range of 1aa due to an increased
distance of 4.7 Å between Asp54 and the protonable
morpholine moiety in 1a (Figure S6). This distance is
sufficient to accommodate water molecules that shield a
possible electrostatic interaction. In the case of 1ja, the ligand
sits within the binding crevice of the protein close to Asp93
(Figure S6). While the positive charge is located at the central
pyrazole ring, the Asp93 side chain is within 5 Å without
shielding by water molecules, resulting in a favorable
electrostatic interaction. Apparently, within our investigated
compound group 1, ligand charge leads to higher <W> and
thus should result in slowing down unbinding kinetics in loop
binding compounds.
On the basis of the predicted pKa values in Table 2, 1aa,

17a, and 1j should be the relevant structures at pH = 7.5.
However, considering pH values at which the alternative
protonation states claim 10% of the full ligand population (1a,
7.1; 17, 8.8; 1ja, 5.2), we realize that a small population of
alternatively protonated forms could be present within an
ensemble of protein−ligand complexes. Following our line of
argumentation on path selection, deprotonated ligand forms
with smaller <W> may actually unbind faster than the
protonated forms, and thus contribute to defining the ligand’s
unbinding rates.
Having investigated the impact of electrostatic interactions

between protein and ligand on unbinding kinetics, we followed
up with an analysis of ligand conformational changes during
unbinding. We note that the hypotheses listed in this and the
next paragraph need to be taken with a grain of salt, as they are
only weakly supported by our data, and in parts depend on a
single data point (1l for helix binders and 1a for loop binders).
We used the ligand radius of gyration as observable, i.e., the
average distance of all ligand atoms from their common center
of mass, and compared the different radii with the natural
logarithm of the experimentally determined koff. For helix-
binding compounds, we investigated a connection between the
difference of the radius during unbinding and the average
radius in the unbound state (i.e., during the fourth quarter of
the simulation) integrated over the pulling distance with
unbinding rates. This variable encodes if ligands bind to the
protein in or need to pass through an extended conformation
and can be rationalized as an entropic contribution of the
ligand itself to unbinding kinetics, i.e., if the conformational
space of flexible ligands becomes restricted during unbinding.
However, as can be seen in Figure 3A, we only obtain a weak
linear correlation of R2 = 0.38.
In loop conformation binding compounds (Figure 3B), the

overall radius of gyration (calculated for the unbound state)
may decide the unbinding rate, though the agreement between

linear fit and actual data is only moderate (R2 = 0.62).
Compound 1a is significantly larger than the remaining loop
binders. Loop-binding compounds appear therefore to unbind
slowly if they exhibit strong van der Waals interactions with the
protein, which again is in agreement with the importance of
enthalpic contributions for loop binders.
Figure 3C shows that for the N-heterocycle series 2, the best

(though still moderate) agreement between radii of gyration
changes and experimental unbinding constants for slowly
unbinding compounds (i.e., when ignoring compounds 2i, 2j,
and 2k) is found for the absolute change in radius of gyration
(R2 = 0.62). Such outliers may be related to the large variation
of side chains within the series, and 2j and 2k exhibit a unique
scaffold. Within group 2, slowly unbinding compounds appear
to retain their shape during unbinding, which may be explained
by a decreased molecular flexibility, while fast unbinding
compounds can change their conformation, irrespective of if
they pass through extended or contracted states. In summary,
the detailed connection between conformational changes and
unbinding kinetics for the investigated Hsp90 ligands appears
to be nontrivial and highly dependent on the individual
scaffold of a ligand.

Electrostatic Locking vs Facilitation. Focusing on the
effect of electrostatics on <W> among group 2 compounds, we

Figure 3. Influence of ligand radius on unbinding kinetics. Group 1
helix binders in red, loop binders in blue, group 2 in cyan. Linear
regression as full lines. Line colors match the color of data points used
for fits. (A) Difference of radii of gyration in respect to the radius in
the unbound state integrated over pulling distance. (B) Mean radius
of gyration during unbinding. (C) Absolute integral of radii of
gyration difference to unbound state over the full course of simulation
in the N-heterocycle compound series 2. Protonation states were
chosen according to pKa predictions. Fit excluding outliers as full line,
fit with outliers as dashed line.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00592
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1021/acs.jcim.9b00592


observe differences from series 1. As can be seen in Figure 2B
and Table 2, compounds 2b, 2d, 2e, 2g, and 2h display an
increased <W> for the protonated form like in the case of
protonated group 1 compounds. Opposing this agreement,
neutral ligands 2a, 2c, 2f, and 2i−2k exhibit a higher <W> than
the protonated ligands with positive charge. However, no
difference in binding positions can be observed, as their
positive charge is placed at the same position as the pyrazole
ring of 1ja (for the example of compound 2aa, see Figure S6).
Figure 4 displays the detailed effect of molecular charges for

the example of the unbinding pathway of 2f: In the uncharged
state, 2f needs to stay in a more contracted conformation up to
a distance of 1.5 nm from the initial binding position. In the
case of the protonated state 2fa, a favorable charge interaction
of the azaindole moiety with Asp102 occurs (see Figures 4B
and S7), which allows a faster transition to the radius of
gyration of the unbound state, which is already reached at a
distance of 1.0 nm from the initial binding position, i.e., when
the ligand is only partially unbound. As the ligand dihedral
potential energy plot in Figure 4A shows, the contact with
Asp102 allows 2fa to access a conformation with higher energy

during unbinding. Looking at the full group 2 radii of gyration
and minimal distance to Asp102 time traces in Figure S7, we
see that 2a, 2c, 2f, and 2i show a similar behavior, pointing to a
common mechanism. We note that 2d and 2e exhibit radii and
distance time traces that principally allow this described
electrostatic facilitation of unbinding, as well, but deviate from
the other ligands in details such as the comparable radius of
gyration in bound and unbound state of 2d and the surprising
decrease in radius for 2ee. Compounds 2j and 2k do not
exhibit contact with Asp102 during unbinding and thus seem
to follow a different mechanism of electrostatic-induced
acceleration. The positive charge on group 2 ligands may
thus facilitate the contraction of a ligand and guide it out of the
binding pocket. This effect further offers an explanation for the
improved R2 and AUC of the fit of protonated group 2 ligands.
As mentioned above, we propose that protonation state
changes of individual ligands may appear transiently, so that
the protonation state predicted by the linear regression of eq 4
does not necessarily agree with the protonation state predicted
from pKa calculations. While the pKa values of heterocycle side
chains performing this contact are quite low (1.8−4.8), the
10% presence pH is found at 2.6−5.9. Especially in the case of
the slowest unbinding compounds, fast protonation changes
thus may act as a catalyst for the acceleration of unbinding
instead of locking the ligand to the protein. We note however
that we observe no correlation between the predicted pKa
values and the koff of compounds. In any way, from a drug
design perspective, it is interesting to notice that fixed charges
on a ligand do not necessarily increase residence times but may
facilitate unbinding by transient electrostatic interactions with
the protein.

Performance and Applicability of Nonequilibrium
TMD. In recent years, several other novel methods have been
established for fast and efficient computation of binding
kinetics12,20,66,70−72 (see refs 73 and 74 for reviews), and our
approach presented here shares similarities with methods
based on metadynamics12 and steered MD.74 While the
calculation of a constraint numerically is more complex than
the addition of a bias potential, the major advantage of our
method is that employing a constraint allows the scanning of
the preset pulling coordinate with a linear velocity that is
accurate down to machine precision. Furthermore, we
experienced in other works63 that employing biasing potentials
causes problems at steep potential gradients, such as long
simulation times or even simulation crashes. Such problems are
overcome by employing constraints, as the biasing force fc
exactly cancels out such gradients. As a prerequisite, we need
to have initial information on unbinding pathways to create a
suitable reaction coordinate to apply the target bias: as stated
in the Introduction, while the ligand is free to diffuse
perpendicular to the pulling vector, these dynamics are
restricted by the ratio between diffusion rate and constraint
velocity. At the start of the simulation, the initial pulling vector
thus needs to roughly point into the direction of the presumed
unbinding pathway. Besides taking educated guesses, this
information can be provided by other methods20,66,75 that
employ more general reaction coordinates. It was recently
shown that TMD simulations can be used to effectively push a
molecular system of choice along a reaction coordinate that
correctly mimics the pathway taken under equilibrium
conditions.28 The first major strength of our nonequilibrium
method is the significant reduction of necessary computational
power: unbinding can be enforced within 0.1 to 0.3 ns of

Figure 4. Electrostatic facilitation in compound 2f. (A) Ligand
dihedral potential energies (referenced to the mean value of the last
0.5 nm and smoothed with a Gauss filter with σ = 0.2 nm) and radius
of gyration as average of N = 30 simulations. Trajectory mean as lines,
1σ error level from bootstrap analysis (see Methods) as shaded area.
Uncharged ligand 2f in red, protonated form 2fa in yellow. (B)
Molecular details of ligand unbinding. A favorable charge interaction
of the azaindoline moiety with Asp102 facilitates the contraction of
the ligand from 1 to 2 and guides the ligand out of the binding pocket
into the unbound conformation 3.
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simulated time, which allows us to reduce the necessary
calculation time by a factor of 30 in comparison to stationary
TI75 (180 CPUhs for one nonequilibrium unbinding event
sampled with 30 trajectories vs 6000 CPUhs for one
equilibrium free energy pathway analyzed by 20 intermediate
steps on a recent octacore CPU workstation). Second, the
nonequilibrum work rapidly converges (see Figure S4),29 and
each simulation by definition results in an unbinding event,
which reduces the necessary number of simulations to a
number well below that for Markov State Model creation.76

Third, we do not change the full system Hamiltonian but
merely add a perturbation, avoiding artifacts such as protein
unfolding that appear in smoothed/scaled MD.77,78

Summarizing the results of our investigation, it becomes
clear that the estimation of binding/unbinding rates and
elucidating the relevant underlying molecular mechanisms is
far more complex than free energy calculations of binding
poses, as it requires not only to correctly characterize a single
binding pose but to assess the full dynamics along binding/
unbinding pathways. While binding simulations apparently are
more easy to carry out due to the shorter inherent time scales,
special care needs to be taken that the simulations result in the
correct binding pose.30 In this respect, biased unbinding
simulations are simpler, as they only require enforced
unbinding, and it is always “simpler to break things than to
make things.” However, to gain meaningful results that can be
compared to experimental data, the biased simulations need to
reproduce the correct protein−ligand dynamics, i.e., ligands
need to leave the protein along the correct pathway, which
needs to be identified first. Another challenge is found in the
theoretical basis of the Jarzynski equality (eq 4) itself: biased
simulations need to start from a representative equilibrium
ensemble of the employed protein. In our case, we were
interested in developing a “fast” method for the prediction of
unbinding kinetics and thus performed only short equilibration
runs of 0.1 ns before initiating unbinding. This requires that
the employed protein crystal structure is close to an
equilibrium structure. Furthermore, if unbinding kinetics are
coupled to protein conformational dynamics, e.g., by only
shortly opening a binding site to allow unbinding, our
approach will not succeed. Besides the results presented
here, we found that flexible proteins with challenging
unbinding pathways pose a problem for our nonequilibrium
TMD method, as a similar investigation with ligands bound to
the β2 adrenergic receptor

79 performed by us did not succeed
in obtaining a successful linear nonequilibrium energy
relationship (data not shown). The reason for this appears
to be the presence of a second intermediate ligand binding
site80 that increases the complexity of the underlying ligand
diffusion pathways and protein conformational dynamics. Last,
as the details of ligand conformational dynamics and protein−
ligand charge interactions during unbinding seem to be crucial
for correct predictions, small errors in ligand parametrization
can cause significant problems, which require elaborate
parametrization schemes. As we want to be able to perform
calculations with a larger number of ligands, we here use a
quick standard parametrization scheme via antechamber44

using semiempirical charges. It thus may be that a part of the
spread of data points around linear fits in Figure 2B is a result
from errors in dihedral angle potentials and atomic charge
assignment. In RAMD simulations on Hsp90, it was indeed
shown that including charge details like halogen σ-holes
improves the prediction of unbinding kinetics.20 As the

problems listed above are principal effects coming from the
underlying Hamiltonian dynamics of the protein−ligand
complexes, other biased simulations approaches78 will face
similar challenges.

■ CONCLUSION AND FUTURE PERSPECTIVE
To elucidate the molecular determinants for unbinding
kinetics, we here combined pre-existing and novel data from
SPR binding kinetics measurements and X-ray crystallography
with nonequilibrium targeted MD simulations on the N-
terminal domain of Hsp90 for two compound series. The
nonequilibrium work <W> obtained from TMD simulations
converges quickly and is a promising predictor for slowly
unbinding compounds. The extraction of clear-cut molecular
discriminators determining unbinding kinetics however proved
to be difficult and yielded only moderate correlations.
Apparently, the connection between protein−ligand inter-
actions, ligand conformational changes, and unbinding rates is
complex and requires further research. We propose ligand
conformational changes and nonbonded protein−ligand
interactions to have an impact on unbinding rates. The exact
impact of these two contributions apparently depends on
individual ligand scaffolds and the details of transient protein−
ligand interaction during unbinding. Electrostatics may exhibit
dual effects onto unbinding kinetics: the presence of a charge
can either increase the residence time of compounds by
locking it to the protein, or accelerate unbinding by facilitating
the formation of a contracted form and guiding the ligand out
of the binding pocket. Concerning consequences for rational
drug design in general, we thus propose that a clear knowledge
of the conformational space accessible by the ligand, the exact
unbinding pathway, and the transient protein−ligand inter-
actions along this path are requirements for the prediction of
ligands with favorable unbinding kinetics.
As our interpretation of the mean nonequilibrium work

<W> as a score for koff by use of eq 4 is based on the Jarzynski
equality,65 we potentially can calculate the unbinding free
energy profile directly from <W>. Indeed, we recently showed
for a NaCl/water test system that such a correction can readily
be achieved via dissipation-corrected targeted MD simula-
tions.29 As this approach additionally yields friction profiles, we
will aim to use the resulting information to carry our Langevin
dynamics calculations81 for the prediction of absolute ligand
unbinding kinetics.
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