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Abstract

Fourier-transform infrared

(FTIR) microspectroscopy is

rounding the corner to become

a label-free routine method for

cancer diagnosis. In order to

build infrared-spectral based

classifiers, infrared images need

to be registeredwithHematoxy-

lin and Eosin (H&E) stained

histological images.While FTIR

images have a deep spectral

domain with thousands of channels carrying chemical and scatter informa-

tion, the H&E images have only three color channels for each pixel and

carry mainly morphological information. Therefore, image representations

of infrared images are needed that match the morphological information in

H&E images. In this paper, we propose a novel approach for representation

of FTIR images based on extended multiplicative signal correction

highlighting morphological features that showed to correlate well with

morphological information in H&E images. Based on the obtained repre-

sentations, we developed a strategy for global-to-local image registration for

FTIR images and H&E stained histological images of parallel tissue

sections.
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1 | INTRODUCTION

Infrared imaging is used today by a wide vibrational
spectroscopic community for medical diagnosis, such as
diagnosis of in principle all types of cancer, and is round-
ing the corner to be a part of clinical routine analysis.
Infrared imaging techniques allow biochemical investiga-
tions of intact cell materials and tissues [1–6], and estab-
lishment of classifiers for identification between healthy
and diseased tissues via chemical spectral fingerprints. In
order to build classifiers based on the chemical informa-
tion inherent in infrared images, for example, for cancer
diagnosis, it is necessary to establish a ground truth.
Today, the ground truth is given by a pathologist's histo-
pathological analysis of, for example, H&E stained
images of microscopic sections. The same or parallel, that
is adjacent tissue sections, are used for infrared imaging
in addition to light microscope imaging [4]. In both cases,
a registration of the infrared hyperspectral image cube
with the microscopy image is necessary if one wants to
establish the same ground truth for infrared images.

The image registration implies spatial alignment of
two images. In the image registration process, one image
is usually referred to as a fixed or a source image, while
the other is referred to as a moving or a target
image [7]. Every position of the fixed image corresponds
in theory to some position on the moving image. A trans-
formation between the fixed and the moving image can
therefore be established. This transformation between
the fixed and the moving image may imply operations
such as locally or globally rotating and stretching the
moving image. The flexibility of the transformation
depends on the image registration process. The aim of
the image registration is to estimate the optimal transfor-
mation by optimizing chosen to match criterion, which
measures the degree of alignment of the fixed and the
moving image.

While the matching of the infrared and H&E images
is sought in the (2D) image domain, the number of vari-
ables of infrared and H&E images in every pixel differs.
Every pixel of the infrared image represents an infrared
spectrum with several hundreds of absorbance values.
For the H&E image, every pixel represents a three-
channel vector of R—red, G—green and B—blue inten-
sity values. The process of matching images obtained
with different imaging systems is called multimodal
registration. For the multimodal registration of infrared
hyperspectral images and light microscopy images,
special care has to be taken with regard to mutual infor-
mation in the images. The most important source of
information in infrared hyperspectral images is chemical
information. The chemical information is caused by
absorption of infrared radiation by chemical bonds in the

biological material that forms the tissue, and is not neces-
sarily related to the morphological information obtained
in light microscopy images. However, it is well-known
that the morphology of tissue samples introduces strong
scatter distortions to infrared images [2, 8–11]. Thus, the
information from scatter distortions could be used for
obtaining a grayscale representation of infrared images.

In the literature, two strategies for image registration
of infrared images with H&E images have been suggested
[12, 13] in the context of which various approaches for
image representation have been proposed. In Reference
[12], two approaches are considered to obtain segmenta-
tion masks: (a) presegmentation based on k-means clus-
tering of both H&E and infrared images and (b) binary
segmentation by separating background and tissue pixels.
An optimization of the mutual information metric was
employed for both methods. In Reference [13], H&E
images were converted to grayscale by obtaining the
luminosity component from the RGB color space using a
linear formula, while two different approaches were
tested for obtaining grayscale representations of infrared
images: (a) SD of spectral values, and (b) computation
of spectral features such as the integral of the amide
I region or the height and the width of certain preselected
peaks. The approaches differ considerably in the type of
information they use. However, all image representations
for FTIR images suggested for image registration involve
mainly chemical information. At the same time, models
for estimating and separating chemical and scatter
features in FTIR images are readily available [2, 14]. Scat-
ter distortions have been considered as a major obstacle
in the interpretation and analysis of infrared hyper-
spectral microscopy images and approaches for the esti-
mation of scatter parameters have been developed
[2, 8–11]. While in most cases the aim of the scatter cor-
rection is to remove the scatter variations in order to achieve
interpretable pure absorbance spectra containing only chemi-
cal absorption features, it is well known that scattering can
also be considered as a source of information. It has been
shown that scattering is directly related to physical properties
of the sample, such as morphology and refractive index
[2, 8–11, 15]. Since physical sample properties also determine
to a high degree the information in microscopy images
obtained in the visible range, we wanted to evaluate if physi-
cal parameters of FTIR images can be used for multimodal
image registration. A frequently used and stable approach
for estimating physical parameters in FTIR spectra is
extended multiplicative signal correction (EMSC) [14]. EMSC
is a model-based approach that allows retrieving pure absor-
bance spectra, while in parallel parameters that are related
to scattering and physical properties of the sample are calcu-
lated [2, 16]. It has been demonstrated that physical infor-
mation obtained by EMSC modeling can be used to
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improve classifiers when combined with chemical informa-
tion from FTIR spectra [17]. EMSC parameters have been
further used for infrared hyperspectral image segmentation
and for establishing spectral quality test based on physical
information in infrared spectra [16].

The aim of the current paper was to develop a robust
approach based on FTIR image representation by EMSC
scatter parameters. Using this image representation, we
established an intensity-based registration framework with a
multiresolution scheme for global and local transformations
and mutual information as the similarity measure. Special
attention was paid to the impact of different optimization
methods on the quality of the registration, as well as the
reproducibility of experiments and H&E-to-grayscale trans-
formations. Existing image registration techniques for FTIR
andH&E are compared to the one proposed in this paper.

2 | MATERIALS AND METHODS

2.1 | Data set

The data set used in this study was provided by the bio-
spectroscopy group (Center for Protein Diagnostics [Prodi],
Department of Biophysics, Ruhr University Bochum, Ger-
many). The samples were randomly chosen from previous
studies performed at the Department of Biophysics
[4, 6, 18]. In total, 13 pairs of FTIR and corresponding H&E
microscopic images of different types of tissues (10 lung,
2 colon and 1 bladder) were used for the study. All samples
were collected during surgery and fixed as described in the
previous publications. All thin tissue slices were deposited
on LowE slides (Kevley, Chesterland, Ohio). For more
information, please refer to [4, 6, 18].

2.1.1 | Histological staining

The same tissue samples (#1–8 and #11) were stained
with Hematoxylin and Eosin (H&E) after FTIR spectro-
scopic measurements. The use of the same samples, as
opposed to using adjacent sections, leads to a more pre-
cise overlay between the spectral image and the classical
stained image. For the other four tissue sections (#9–10
and #12–13) an adjacent section was used for staining.
For staining, the tissue samples were washed with Mili-Q
water, stained 50 seconds with Harris Hematoxylin
(VWR, Germany), washed with water, counterstained
with eosin (Merck, Germany), dehydrated with increas-
ing gradients of alcohol, and mounted with Euparal
(ROTH, Germany). The stained sections were imaged
automatically with an Olympus BX43 microscope with a
10× objective.

The resolution of all H&E images presented here was
reduced due to the size limitations in the data format and
the microscope operation software used in the study.
Therefore, the pixel size does not correspond to the
expected size for a 10× objective. An overview of the
images used in this paper is given in Table 1.

2.1.2 | FTIR imaging

FTIR imaging was done in transflection (reflection-
absorption) of LowE slides as described previously in
details in [4, 6, 18]. The measurements were performed
using two Agilent (Santa Clara, California) Cary 620 infra-
red microscopes equipped with a 128 × 128 pixel liquid
nitrogen-cooled (MCT) focal plane array detector. Spectra
have been collected between 3700 and 950 cm−1 at a

TABLE 1 Overview of tissue

samples selected for image registration
# Tissue type H&E dimensions H&E pixel size (μm) FTIR dimensions

1 Bladder 28 544, 34 392 0.5 2432, 2816

2 Lung 6000, 4500 3.4 3712, 3840

3 Lung 4056, 4374 3.2 2688, 2560

4 Lung 4665, 4496 4 3072, 3072

5 Lung 6828, 7542 1.2 1152, 1536

6 Lung 12 440, 13 870 0.95 2048, 1920

7 Lung 8382, 10 806 2.8 1408, 1152

8 Lung 12 520, 14 179 0.8 1792, 1024

9 Lung 10 352, 10 269 2 1792, 1024

10 Colon 3000, 2206 7 3072, 3200

11 Colon 6000, 4130 5 3328, 1920

12 Lung 13 536, 12 024 0.96 3072, 2176

13 Lung 22 320, 20 610 1.07 4480, 2944
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spectral resolution of 4 cm−1. One hundred and twenty-
eight scans were co-added for sample and background
spectra. The mapped pixel resolution is �5.5 μm, so the
tissue sampling area is nearly 715 × 715 μm for each FPA
field. The instrument and the microscope chamber of the
instrument were continuously purged with dry air to avoid
spectral contributions of atmospheric water. Furthermore,
a liquid nitrogen cooling supply was installed (Norhof,
Maarssen, Netherlands) at both systems enabling constant
measurements 24 hours a day, 7 days a week. The Fourier
transform was done using Mertz phase correction and
Blackman-Harris 4-term apodization. The measurements
were taken in the mosaic mode of the Agilent software.
Individual mosaic tiles, each measuring 128 × 128 pixels,
were stitched automatically after measurement. Each raw
spectral vector consisted of 1428 data points (resolution
4 cm−1, zero-filling 2, upper limit 5266 cm−1). The
stitching for both instrument data sets was performed in
Matlab (MathWorks, Natick, Massachusetts).

2.2 | Proposed image registration
framework

The aim of this study was to develop a robust approach
for obtaining grayscale representations of FTIR images
that can be used for image registration, based on EMSC
scatter parameters. In this study, a five-step approach for
FTIR and H&E image registration is proposed. Figure 1

outlines the main steps and ideas of our proposed image
registration framework.

In the first step, grayscale representations are
established from both FTIR and H&E images. For the
image registration, it is crucial to establish grayscale
images from FTIR images with similar local contrast as
the grayscale images of H&E images by using the EMSC
multiplicative b parameter from Equation (5). The H&E
image is converted to grayscale by computing the lumi-
nance component from Equation (1).

In the second step, manual preregistration is
employed. Four visually identified and selected landmark
points at both images are used for estimation of an affine
transformation T1 [19]. In this step, only a coarse trans-
formation is determined, which is used as an initial trans-
formation for the optimizer-based registration method in
the following step. The initial manual registration step is
preferred since the spatial resolution, dimensions and
morphology of the images differ strongly. This makes
fully automatic, as well as robust, initialization challeng-
ing and non-trivial.

In the third step, the parameters of the other affine
transformation T2 are estimated by maximizing the
mutual information of the fixed image If and the trans-
formed moving image Im ∘ T2 ∘ T1, using gradient descent
or conjugate gradient descent optimization. The multi-
resolution approach is established to speed up the optimi-
zation process, and to make it more robust [20]. In this
step, the images are aligned only linearly.

FIGURE 1 The proposed image registration framework

4 of 15 TRUKHAN ET AL.



In the fourth step, the parameters of the cubic B-splines
transformation T3 are estimated by maximizing the mutual
information of If and Im ∘ T3 ∘ T2 ∘ T1 images using the
limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) optimization method with the multiresolution
approach. Free form deformation is established for T3

such that the moving image is deformed by the influ-
ence of the control points. In this step, local deforma-
tions of tissues are estimated, which are often present
in, but not limited to, parallel sections.

In the last step, the composed transformation
T3 ∘ T2 ∘ T1 is applied to the indexes of the fixed
image to obtain a warped moving image and align it
to the fixed one. The measure of the registration
quality is the transformation registration error (TRE),
which represents a geometric accuracy between the
moving and warped fixed landmarks in the moving
image domain.

2.3 | Grayscale conversion

2.3.1 | H&E stained images

The H&E staining protocol and light-field imaging is
routine in histopathology. Hematoxylin stains nucleic
acids with a deep blue-purple hue, while eosin stains
proteins with a pink color nonspecifically [21]. The
histopathologically stained image received from the
light microscope has a higher spatial resolution com-
pared to the FTIR image, while the chemical informa-
tion is contained in only three channels—RGB. Two
approaches for obtaining grayscale representations
from microscopic three-channel images were explored:
(1) obtaining the luminance component using a linear
Equations (1), and (2) estimating a total concentration
of H&E dyes using different stain deconvolution
methods [22, 23].

First approach for image representation of H&E images
The H&E stained image is converted from RGB to
grayscale using the linear combination of color chan-
nels and converting it to the luminance Y [24, 25]
according to

Y =0:299�R+0:587�G+0:114�B ð1Þ

where R, G and B represent the red, green and blue chan-
nels of the original H&E image. The luminance
Y represents human brightness perception and is con-
nected to the amount of absorbed light due to H&E
stains. We denoted the resulting grayscale image by lumi-
nance image.

Second approach for image representation of H&E
images
An alternative approach is based on color deconvolution
methods which are used in histopathology to obtain stain
concentration maps from the RGB image. For color
deconvolution, the original histological image I is first
converted to an optical density image OD according to
Beer–Lambert's Law:

I =255× e−OD,

OD= − log
I

255

� �
:

ð2Þ

As was shown in Reference [26], the OD for each
channel is linear to the concentration of the absorbing
material and the following equation holds true:

ODflat =C × S ð3Þ

where ODflat is a N × 3 matrix and N is the total number
of pixels in the image, C is a N × 2 matrix of H&E stain
concentrations, and S is the stain matrix. Each row of
S represents a specific stain (hematoxylin or eosin) and
every column represents the optical density as detected
by the red, green and blue channel for each stain [26]:

S=
HR HG HB

ER EG EB

� �
: ð4Þ

Two methods were employed to estimate the stain
matrix S: (a) the method of Macenko et al [22], which is
based on a singular value decomposition and (b) the
method of Vahadane et al [23] in which sparse nonnega-
tive matrix factorization (SNMF) is used. When the
matrix S is calculated, the stain concentration matrix C is
estimated by Equation (3). Concentration maps are
obtained by reshaping the matrix C to the image domain
where every pixel is a vector of H&E concentrations. By
summing up H&E density maps, a total concentration
map is obtained. The resulting image is converted back
to intensity values using Equation (2), and thus a gray-
scale representation of a histological image is obtained,
which we denoted as total concentration image.

As was shown in Reference [22], for stability reasons
of deconvolution algorithms, background pixels of the
image should be removed. For this we first employed a
brightness standardization procedure to make the back-
ground fully white: (a) the image is converted to CIELAB
color space [24, 25], (b) lightness values larger than the
95th percentile are set to 255 (fully white), (c) the image
in CIELAB is converted back to RGB. The pixels with low
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absorbance (lightness higher than 0.8 in CIELAB color
space) were thereafter truncated by thresholding.

The images obtained when applying Macenko et al
deconvolution, we denoted as total C (Macenko) and
total C (Vahadane) when applying Vahadane et al.
deconvolution.

2.3.2 | FTIR images

The hyperspectral images used in this paper consist of a
high number of pixels with a full spectrum in each pixel.
Since infrared microscopy imaging data are strongly
affected by Mie scatter distortions, the first step of the
data processing is usually the Mie scatter correction
to remove Mie scattering effects from the spectra. This
correction had been performed previously on this data
set [4, 6]. State-of-the-art Mie scatter corrections for infra-
red microspectroscopy are based on iterative algorithms
developed during the recent years [8–11, 27]. The state-
of-the-art algorithm employs a model based on EMSC,
and uses an iterative procedure to restore the pure absor-
bance spectra. In the modeling process, parameters for
model components are estimated [9–11, 27]. However,
since the process is iterative and model components are
adapted individually for each iteration in the iterative
process, the Mie scatter parameters are not directly com-
parable from spectrum to spectrum. In order to obtain
parameters for each image pixel that refer to the same
components, we use in this paper a basic EMSC approach
on the raw spectra. It is important to note that the only
aim of the basic EMSC approach here is to estimate
model parameters for image registration and not to
preprocess the image. Any further use of the infrared
spectra, for example, for building a classifier as done in
[4, 6], may involve basic EMSC or a Mie correction of the
spectra, which could be done after image registration.

In the present paper, we used the basic form of EMSC
according to Reference [14]. The EMSC model in its basic
form allows to model a measured apparent absorbance
spectrum Z ~νð Þ given at a wavenumber ~ν with a polyno-
mial of degree two

Z ~νð Þ= a+ b�Zref ~νð Þ+ d�~ν+ e�~ν2 + ϵ ~νð Þ ð5Þ

where the parameter a is the baseline shift, b is the
optical path length, and d and e are linear and
wavelength-dependent variations. The model spectrum
Zref ~νð Þ represents the reference spectrum, for example, a
mean spectrum, and ϵ ~νð Þ represents the unmodelled
residual [2, 11, 14, 28]. The parameters are estimated by
ordinary least squares. Scatter contributions can be added

to the model either based on empirical considerations
such as the linear and quadratic contribution in Equa-
tion (5) or based on physical models [11]. The model
parameter estimation is very stable, since it is based on
all pixel observations and only four parameters are esti-
mated. After applying the EMSC model to every spec-
trum of the FTIR image, parameter maps are obtained.
When the parameters are estimated, corrected and nearly
scatter-free spectra Zcorr ~νð Þ can be obtained according to

Zcorr ~νð Þ= Z ~νð Þ−a−d�~ν−e�~ν2
b

: ð6Þ

According to Beer–Lambert' law, the measured absor-
bance spectrum in the infrared is directly proportional to
the effective optical path length b. Therefore, the parame-
ter b is an estimate of the optical density in the infrared
spectral range. Both the H&E representations, that is,
luminescence and the total concentration image, are opti-
cal densities. Therefore, the EMSC b parameter and the
H&E representations are equivalent. Since the parameter
b is directly related to the optical path length, it has a
strong relation to the morphology of the sample
[2]. Therefore, we use the parameter b that is estimated
for each spectrum in the hyperspectral map for a gray-
scale representation. Another important point to mention
is that the parameter b is a very stable estimate to be
obtained from infrared spectra since it refers to the
model reference spectrum. This is due to the fact that
the signature of a biological sample (which the reference
spectrum is) is very characteristic in the infrared and
has - compared to noise or instrumental interferents—a
very distinct and characteristic form.

The EMSC model of Equation (5) requires the estima-
tion of a reference spectrum. A commonly used approach
is to use the average spectrum of a set of raw spectra as a
reference spectrum. In the paper at hand, we consider
three different types of reference spectra. (a) We use the
average spectrum of a complete infrared image. We refer
to the global average spectrum as �Z ~νð Þ . (b) We first
remove noisy spectra from empty or nearly empty regions
of the section by applying an quality test according to
[4, 6, 18], then calculate the average spectrum and use it
as the reference spectrum. We denote this reference spec-
trum by �Zqt ~νð Þ . (c) We used the Matrigel spectrum from
[11] as a reference spectrum. We label the Matrigel spec-
trum by ZM ~νð Þ. Using three different reference spectra as
model spectra for EMSC resulted in three different EMSC
parameters and three grayscale representations. In addi-
tion to the representations obtained by EMSC, we con-
sider the grayscale representation which was computed
as the SD of the original spectra, according to the
approach from Reference [13].
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2.3.3 | Image preprocessing

A variety of image preprocessing and enhancement
methods can be applied to FTIR and H&E stained gray-
scale images prior to registration. Among them are histo-
gram matching [29], histogram equalization techniques
[30], brightness standardization, gamma and logarithmic
correction. In this study, the H&E stained grayscale rep-
resentation, which we denoted by contrasted image, was
obtained using brightness standardization and extracting
the luminance image. We tested histogram equalization
techniques for both grayscale images, but no improve-
ment of the registration quality was observed. Thus, no
preprocessing was employed on the FTIR grayscale
representations.

2.4 | Image registration background

Image registration is the process of spatially aligning and
overlaying two or more images. In this paper, we con-
sider multi-modal registration of two grayscale images:
the fixed image If and the moving image Im. Image regis-
tration methods can be classified into two main groups:
intensity-based (or area-based) methods and feature-
based methods [31]. We consider both types of methods.
In our intensity-based framework, the similarity metric is
computed on the physical coordinates of a fixed image.
Therefore, it is preferable to select the image with the
smallest number of pixels as a fixed image in order to
speed up the calculations. Since the FTIR grayscale repre-
sentation had a lower number of pixels, we selected the
FTIR grayscale representation as the fixed image If and
the H&E grayscale image as the moving one Im. This
saved computation time.

2.5 | Intensity-based registration
framework

Intensity-based registration is usually formulated as an
optimization problem of an iterative search of the spatial
mapping T, which optimizes (minimizes or maximizes)
the chosen matching criterion M(If, Im ∘ T). The transfor-
mation model T, which maps points in the fixed image
Im(x) to points in the moving image If(x) is defined on
x ∈Ω with parameter vector θ = (θ1, …, θn). The
matching criterion, that is, the (dis)similarity criterion M,
characterizes a measure of how well the transformed
moving image is aligned with the fixed one. In case of
maximization of the similarity criterion, the task of image
registration is to find the parameter θ*, such that
θ* = argmaxθM(If, Im ∘ T).

Interpolation is needed to compute the similarity
criterion, where image values Im(T(x, θ)) are evaluated
in nongrid positions. In our study, linear interpolation
was used.

2.5.1 | Matching criterion

Although FTIR and H&E grayscale images represent the
morphology of the same tissue, there are obviously differ-
ences in sample preparation, image acquisition and trans-
formation. It was shown in Reference [32], that metrics
based on the calculation of mutual information are well
suited and widely used for such multi-modal registration
(see Supporting Information for more details).

There are several ways to implement the mutual
information metric [32]. Mattes et al [33] approach was
established in this study, using 50 histogram bins.

2.5.2 | Transformation model

Transformation defines a mapping from points on the
moving image to every point on the fixed image. In this
paper, a composition of three transformation models
T3 ∘ T2 ∘ T1 was employed, where T1 and T2 are global
affine transformations, and T3 is a local or deformable
transformation model using cubic B-splines.

The affine transformation has six parameters and
the maximum degree of freedom among 2D linear
transformations:

x0

y0

� �
=

M00 M01

M10 M11

� �
� x

y

� �
+

Tx

Ty

� �
: ð7Þ

This model allows rotations, translations, nonuniform
scaling and shearing, which maps a parallelogram into a
square. The T1 transformation was roughly estimated
using manual landmarks, while T2 was able to refine the
resulting composed transformation T2 ∘ T1 using an opti-
mization procedure.

Due to the artifacts of the sample preparation and
differences in sample sections, a local transformation
model was established. A lot of effort has been
directed to research on the deformable or non-rigid
image registration (see [7] for a review paper on
deformable medical image registration). The deform-
able transformation allows local regions to be regis-
tered independently:

x0

y0

� �
=

x

y

� �
+u x,yð Þ ð8Þ
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where u(x, y) is the displacement field. The free-form
deformation model T3, which is one of the most common
types of deformable transformation models, was estimated
by maximization of the MI metric M(If, Im ∘ T3 ∘ T2 ∘ T1)
and cubic B-splines [34]. In the current study, we com-
pared two free-form deformation models. One is based on
a 10 × 10 grid of B-spline control points which we denoted
further as simple transformation. For the other, which we
denoted as advanced transformation, in addition, a multi-
resolution transformation model complexity scheme is
used (see Section 2.5.5).

2.5.3 | Optimization method

The role of the optimization method is to estimate a
parameter vector θ of a chosen transformation T and
minimize/maximize a metric M. The most common class
of optimization methods is the class of continuous
methods. The general form for continuous optimiza-
tion is:

θn+1 = θn + αngn θnð Þ ð9Þ

where θ denotes the vector of parameters of the transfor-
mation, n is the iteration number, αn the learning rate
and g is the direction of the parameter search. In general,
the search direction is computed in respect to metric
(or matching criterion) M and regularization term R and
can thus be written as gt(M(θn) + R(θn)). The regulariza-
tion term helps to avoid unrealistic deformations, but
was not used in the current study.

In this paper, the affine transformation T1 was esti-
mated using a closed-form solution [19, 35], the affine
transformation T2 using gradient descent (GD) and
conjugate gradient (CG) methods, while the cubic-B
spline transformation T3 was estimated with the Broyden–
Fletcher–Goldfarb–Shanno algorithm (BFGS). More spe-
cifically, it was done by a limited-memory BFGS (L-BFGS)
which is part of a quasi-Newton family of methods
[34]. Gradient descent methods are based on the optimiza-
tion of parameters by following the negative gradient of an
objective function: g = −rθM(θn). Conjugate gradient
methods utilize the knowledge of the previous gradient so
that the new gradient is conjugate to the previous search
direction: gn = −rθM(θn) + βngn − 1, where βn is a
weighting factor which was calculated using the Polak-
Ribiere formula [7]. Learning rate and parameters scaling
estimation at every iteration was used for GD and CG
[36]. Learning rate estimation helped in convergence,
whereas estimation of parameters scaling resolves the dif-
ference in magnitude of the shifting, scaling and rotation
parameters. Quasi-Newton methods aim to estimate the

inverse Hessian matrix H−1(θ) and the search direction is
defined as g = −H−1(θ)rθM(θn). The exhaustive optimizer
(EO) was tested as the initialization step, but due to lack
of robustness, manual annotations were chosen as an ini-
tialization step for the optimization.

2.5.4 | Sampling strategy

During the optimization, matching criterion M along
with its gradient ∂M/∂θ are computed on a selected set of
samples x ∈Ωf. Several sampling strategies are available
in the literature. Among them are random sampling,
quasi-random sampling [37] and sampling based on strik-
ing image features like edges [38]. Since in our data set
the amount of pixels on a fixed image is usually lower
than on the moving one, we used all pixels of the fixed
image sampled on a random grid. This improved stability.
For the sake of reproducibility, the sampling random
seed was fixed across all the experiments.

2.5.5 | Multiresolution strategies

Multiresolution or hierarchical strategies are very widely
used in image registration [20, 31, 32, 38]. We established
image pyramids with three levels, utilizing two multi-
resolution strategies. The first strategy applies a Gaussian
pyramid (σ = 2, 1 pixels) with downsampling (factor = 4,
2) to the image data. We used the second strategy for
computing the advanced transformation model. This
strategy is aimed for the gradual increase of model com-
plexity where grid spacing is halved every resolution level
starting from a 10 × 10 grid.

2.6 | Evaluation metric

First of all, the registration results were evaluated visu-
ally. However, a quantitative measure of the quality of
the results is required to compare different methods. An
efficient way to evaluate multimodal image registration
of microscopic images quantitatively is to use a target reg-
istration error denoted by TRE. For this, we manually
selected a set of landmarks {xi} on a fixed (FTIR) image,
and a corresponding set of landmarks {yi} on a moving
(H&E stained) image for every pair. Landmarks {xi} were
warped using the computed transformation T. The TRE
is calculated as the Euclidean distance between landmark
yi and warped landmark T(xi): TRE = d(T(xi), yi). In order
to compare the TRE across images with different pixel
resolutions, we calculated absolute TRE which we denote
by aTRE = TRE × rm, where rm is a pixel resolution of a
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moving image. Furthermore, a median of aTRE, which we
call maTRE, is calculated for all aTRE in the image in order
to avoid penalizing inaccurately selected landmarks.

We selected from 9 to 20 landmark points in every
image pair. According to the literature [31], it is more pref-
erable to have more landmark points with higher localiza-
tion error, rather than having only a few of them which
were detected more precisely. We should mention that land-
marks used for evaluation and for initial transformation are
completely independent. Ones for estimating the initial
transformation were selected very roughly. Those used in
the evaluation metric were selected carefully as precise as
possible by looking at the big picture first and zooming the
area of interest afterward with comparing the local intensi-
ties of corresponding landmarks on images.

2.7 | Implementation details

We adapted the code from [39] for obtaining the total
concentration image which was used as one of the gray-
scale representations of the H&E image. In-house python
routines for FTIR-to-grayscale and H&E-to-grayscale con-
versions, and for establishing image registration were devel-
oped. We used Fiji [40] and its macros from [41] for the
landmark selection. SimpleITK [42] which is part of the
Insight Segmentation and Registration Toolkit (ITK) [36]
was used as the image registration framework. The parame-
ters of image registration methods are listed in Table S1.
The source code used in this study is publicly available at
https://github.com/BioSpecNorway/IRmHiRegistration.

3 | RESULTS AND DISCUSSION

Thirteen pairs of FTIR and H&E stained images of
bladder, lung and colon tissues were used to evaluate the
proposed registration framework.

H&E stained images were converted to grayscale
representations by obtaining (a) the luminance of the
RGB image which we refer to as luminance image, (b) the
luminance of the brightness standardized RGB image
denoted as contrasted luminance, (c) the total concentra-
tion images using the deconvolution method of Macenko
et al. [22] denoted as total C(Macenko) and (d) using the
deconvolution method of Vahadane et al [23] denoted as
total C(Vahadane) which applies color deconvolutions as
was described in Section 2.3. The grayscale representa-
tions of the H&E stained images are shown in Figure 2.
The luminance transformation, as well as the contrasted
luminance transformation, are shown in Figure 2B,C. They
are straightforward, fast to compute and represent sample
morphology well. Grayscale representations obtained from
the H&E stained images by color deconvolution are shown
in Figure 2D,E. Color deconvolution is the procedure where
we calculate stain vectors and concentration maps. Received
concentration maps are then summed up to obtain gray-
scale representation. Visually, images transformed in this
way appear even more contrasted. We measured the con-
trast of images using Root-mean-square (RMS) contrast
[43]. Averaged RMS contrast is 39.58 ± 9.5, 46 ± 10.65,
61.83 ± 13.25 and 61.19 ± 13.22 for luminance, contrasted
luminance, total C(Macenko) and total C(Vahadane)
images respectively. It has been shown that color
deconvolution methods have powerful stain normaliza-
tion capabilities and remove undesirable color varia-
tion [22, 23]. However, color deconvolution requires
more computational time and memory, as well as refer-
ence images. As reported in [25], there are many other
color-to-grayscale transformations such as Intensity,
Luminance, Value, Luster and Decolorize. According to
[25], these color-to-grayscale algorithms are very dif-
ferent in their performances for image recognition
tasks using a Naive Bayes Nearest Neighbor framework
with different image descriptors. However, we found
that different grayscale representations did not

FIGURE 2 A, Hematoxylin and Eosin (H&E) stained image of a bladder tissue and, B-E, it's grayscale representations. B, Luminance

image, C, luminance contrasted image, D, the intensity image of total H&E concentrations computed using Macenko et al and, E Vahadane

et al deconvolution methods
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influence the quality of the intensity-based registration
procedure we used in our study, as shown further
below.

FTIR images were transformed to grayscale using the
SD according to [13] and the methods we propose in this
paper, which involve parameters calculated from an
EMSC model. Among the EMSC parameters, the most
informative parameter is the parameter b of Equation (5).
It is informative, since it is directly related to the optical
thickness of the material. It has been shown previously
that the parameter b displays distinct morphological
information in infrared images which could even be
related to chemical changes in the images, when mor-
phology and chemistry were correlated [2, 17]. Since the
EMSC parameter b allows a stable estimation and since it
is strongly related to the morphology, we suggest to use
the EMSC model parameter b to calculate grayscale
images.

In order to test the effect of the reference spectra on
the EMSC model, we used three different reference spec-
tra which resulted in three different EMSC models:
(a) the EMSC model labeled as EMSC ZM ~νð Þð Þ was calcu-
lated using the Matrigel spectrum [44], which is a spec-
trum obtained from Reference [11], and which represents
a nearly scatter-free spectrum of tissue components,

(b) the average spectrum of a full infrared hyperspectral
image (model EMSC �Z ~νð Þð Þ ), and (c) the average spec-
trum of spectra that have passed a quality test
(model EMSC �Zqt ~νð Þ� �

). The b parameters estimated by
the corresponding three models are plotted as grayscale
images in Figure 3A,E,F for the EMSC models with refer-
ence spectra (a), (b) and (c), respectively. The EMSC
parameters a, d and e for the EMSC model using the mat-
rigel spectrum as a reference are shown in Figure 3B,C,
D, respectively. It can be seen that all three EMSC models
using the three different reference spectra result in gray-
scale images with a high contrast. The parameters a,
d and e in Figure 3B,C,D obviously depict slightly differ-
ent morphological features with a lower contrast with
respect to morphology. The parameters a, d and e show a
tiling effect, as the edges of the focal plane array detector
are clearly visible. Since the absorbance spectra are
obtained by dividing the measured sample intensities by
the measured background intensities followed by calcu-
lating the logarithm, the tiling effect cannot be due to a
trivial intensity variation. Therefore, it must be related to
a physical effect where radiation at the edges of the focal
plane array detector is lost in the sample due to scattering
or other optical effects. The EMSC algorithm seems to
capture this effect very well through the parameters a,

FIGURE 3 A-D, The estimated b, a, d, e parameters of the EMSC model with the Matrigel as a reference spectrum. A, E, F, G, FTIR

grayscale representations are used in the registration. E, The estimated b parameter of the EMSC model using a reference spectrum

calculated as a pixel-wise mean of a whole hyperspectral image. F, The estimated b parameter of the EMSC model using a reference

spectrum calculated as a mean of quality assessed foreground spectra. G, SD for every spectrum of the raw FTIR image. H, Binary image of a

quality test (white—foreground or tissue region, black—background)
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d and e. It is important to note that the parameter
b referring to the optical path length is not affected by
the tiling effect. The SD image, which calculates the gray-
scale representation using SD for each spectrum, is
shown in Figure 3G. It can be seen that the SD image is
strongly affected by the tiling effect and it therefore
shows a lower contract compared to the EMSC parameter
b image representation. Figure 3H shows the image seg-
mentation obtained by performing a quality test of the
images according to [4, 6, 18]. The segmented image was
used to calculate the reference spectrum �Zqt ~νð Þ.

After establishing grayscale images as representa-
tions for the H&E and the FTIR images, we turn now to
the image registration procedure. In Figure 4 the regis-
tration results are shown for the image pair #11.
In Figure 4A the grayscale FTIR EMSC ZM ~νð Þð Þ b image
(cyan) superposed with warped grayscale total
C(Vahadane) image is shown after advanced local trans-
formation. A zoomed region after manual landmark
transformation is shown in Figure 4B, after affine transfor-
mation estimated by the conjugate gradient method is

shown in Figure 4C and after advanced local transformation
estimated by the L-BFGS method is shown in Figure 4E,D.
The first essential step in our proposed registration frame-
work is the initial alignment of images. To the best of our
knowledge, current light-field and FTIR microscopes do not
supply meta information of acquired images, which can
include image origin, spacing and directional cosines as in
CT or MRI modalities. Accurate estimation of a pixel spac-
ing, i.e. pixel resolution, could greatly simplify the initial
alignment, since in such a case the search space of the
parameters is reduced. We tested several automatic
methods based on matching of image feature descriptors
including SIFT, SURF, ORB [45–47] and a method pro-
posed in Reference [13]. In addition, we employed an
exhaustive optimizer with prior image moments centering
to search through the specified range of parameters for a
similarity transformation. However, none of these auto-
matic methods showed to be robust in estimating the initial
affine transformation T1 for every image pair in our data set.
The main reason for this is that H&E and FTIR images dif-
fer in basic image characteristics such as spatial resolution,
initial orientation, and dimensions, as well as the difference
in regions of interest. Feature-based methods are generally
not robust because images commonly have different local
features. Such methods, therefore, suffer from the false
matching of descriptors. The intensity-based exhaustive
method can get stuck in the local minimum very easily and
in addition to that is computationally expensive. In addi-
tion, despite the fact that these methods are automatic, they
still require hyperparameters tuning for every image pair
which is usually done either manually or using a time-
consuming grid search. Therefore, we decided to manually
select four corresponding landmarks in both images which
yielded a reasonable estimation of scaling, shifting and rota-
tion parameters of the T1 transformation.

As described in the materials and methods section, the
initial transformation T1 was refined by the affine transfor-
mation T2 which was obtained by maximizing the mutual
information of two grayscale images. We compared gradi-
ent descent and conjugate gradient optimization methods
with parameters described in the Section 2.5. The conju-
gate gradient showed faster convergence and slightly
better registration results than gradient descent (see
Figure 5).

An important step in the proposed registration
scheme is the deformable or nonrigid registration. We
observed local differences in sample morphology even in
cases where the same tissue samples were used for both
FTIR spectroscopic and optical microscopic measure-
ments (see Figure 4). In Figure 4C, the overlay of FTIR
grayscale image (cyan) and warped H&E grayscale image
(red) after global T2 ∘ T1 transformation is shown. Here
in the zoomed area, H&E image of glandular structures is

FIGURE 4 Registration results for the image pair #11. A,

Grayscale FTIR EMSC ZM ~νð Þð Þ b image (cyan) superposed with

grayscale H&E total concentration image (red) computed using

Vahadane et al deconvolution method after local registration. B,

Initial, C, global and E, local registration. D, Displacement field
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locally misaligned: misalignment varies from upper left
to bottom right corners. In the upper left corner we can
observe that the H&E image is moved up compared to
the FTIR image whereas in the bottom right corner this
misalignment is in the opposite direction.

To compensate for local differences, deformable regis-
tration models are applicable [7, 13, 32, 48]. As was
described in Section 2.5, a deformable transformation T3

parameterized by cubic B-splines was estimated using the
L-BFGS method based on mutual information. The trans-
formation T2 ∘ T1 was used as the initial transformation
for T3, where T2 was computed using the conjugate gradi-
ent method. We calculated simple transformation with a
10 × 10 grid of B-spline control points and advanced
transformation where grid spacing is halved at every reso-
lution level. In our study, the simple transformation model
provides a good balance between registration accuracy and
computational time. However, in cases of large differences
in sample morphology (eg, due to local stretching and in
case of adjacent tissue sections) advanced transformation
with a large number of parameters are required. To be
able to handle such large differences, high capacity regis-
tration models can be optimized with a regularization
term, which penalizes unrealistic transformations [7]. In
Figure 4E, we see that FTIR and H&E images are perfectly

aligned using advanced local transformation T3 ∘ T2 ∘ T1.
Additionally, the computed displacement field (see Figure 4D)
confirms our observations that there are local differences
in sample morphology of two measurements.

Furthermore, we compared the performance of regis-
tration methods considered in the study (see Figure S2).
Affine transformations computed using Gradient Descent
and Conjugate Gradient took, on average, 64 ± 57 seconds
and 189 ± 121 seconds correspondingly. A computing of
Cubic B-Spline simple and advance transformations took
133 ± 146 seconds and 2711 ± 3056 accordingly. In total,
it can take around 5 minutes for a simple transformation
and 1 hour for advanced transformation.

As was shown by Rohlfing [49], surrogate measures,
for example, cross-correlation which are commonly used
in estimating the accuracy of nonrigid image registration
algorithms do not provide valid evidence for accurate reg-
istrations and should thus not be reported or accepted as
such. In our study, the registration quality was measured
by the registration transformation error (TRE), which
was computed using in average 12 manually selected
corresponding landmarks in both images. However, we
found that often it is problematic to find corresponding
landmarks in the images of adjacent tissue sections
because of the morphology difference (see Figure S3).

FIGURE 5 Box plots of the measured median absolute target registration errors (maTRE) for two affine registration methods (using

gradient descent and conjugate gradient optimization methods) and for two cubic B-Spline transformations using L-BFGS optimization

method (simple transformation denoted by (1), advanced transformation denoted by (2)) on different grayscale representations of FTIR

(b images from three EMSC models and SD image) and Hematoxylin and Eosin (H&E) images (Y, luminance; YC, contrasted, C(M), total

concentration image of H&E using Macenko et al and C(V), Vahadane et al. deconvolution methods). In this plot, one point is the error for

one image pair. Polylines highlight errors for image pair #10
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Some landmarks were very precisely marked, while a few
others comprised a notable marking error. In order to
take into account inaccurately selected landmarks when
measuring the quality of registration, we calculated the
median of TREs as described in Section 2.6. Furthermore,
maTREs were obtained which allowed comparing several
algorithms of registration and grayscale representation
across images with different pixel resolution. In our
study, we thoroughly explored 64 image registration
experiments per image pair, which correspond to all com-
binations of four FTIR-to-grayscale, four H&E-to-
grayscale and four image registration algorithms. In
Figure 5, we present only the most intriguing combina-
tions of grayscale representation algorithms. All combi-
nations are presented in Figure S1. In this figure,
box-and-whisker plots show medians of maTRE values.
From this, we see that conjugate gradient method is
appeared to be more precise than gradient descent in esti-
mating global affine transformation. Using local transfor-
mations, specifically with a higher degree of freedom as
in advanced transformation, greatly reduced maTREs.
The registration of the same tissue sections (#1-8 and
#11) shows high accuracy. However, the registration of
the adjacent tissue sections (#9-10 and #12-13) appeared
to be more challenging. For the image pair #9, it was dif-
ficult to find enough corresponding landmarks in two
images to obtain an unbiased measure of the image regis-
tration error. This is due to the large difference in mor-
phology. Thus, we excluded it from a quantitative
comparison. It is worth mentioning that for the image
pair #10 the registration error was significantly reduced
by the local registration methods (see Figure 5). We rec-
ommend therefore to use the same tissue sections for
FTIR imaging and H&E staining when images are to be
registered. Adjacent tissue sections may naturally show
locally strong differences in morphology, a fact that is
reducing the registration quality considerably.

Furthermore, from these results, we have observed that
different algorithms of grayscale conversion do not influence
the quality of the proposed intensity-based image registra-
tion scheme. However, as we have seen in our experiments,
the results of feature-based image registration for estimating
the initial transformation were in most cases similar to those
presented in Reference [13]. We think that our proposed
algorithm of FTIR-to-grayscale conversion based on EMSC
b parameter should thus be preferred since it does not pro-
duce the tiling effect.

4 | CONCLUSION

In this work, we proposed a multimodal registration
scheme of infrared spectroscopic and optical microscopic

images. We compared different methods for grayscale
representations of FTIR and H&E stained images and
image registration, including methods that can deal with
local deformation of images. We studied various algo-
rithms of H&E-to-grayscale transformations. Since we
did not find qualitative and quantitative differences in
the quality of intensity-based image registration compar-
ing several grayscale representations, we suggest using
the simplest H&E-to-grayscale transformation, that is,
the luminance image.

We tested feature-based image registration methods
(including the one suggested in Reference [13]) for all
possible combinations of grayscale representations at
hand. Due to the nature of several samples, it was not
possible to match the descriptors of detected salient
image features [45–47], which was also reported in
[12]. For those pairs of images, when feature-based
methods are not applicable, we suggest estimating the
initial affine transformation using matching of manually
selected landmarks on two images. This initial transfor-
mation was then refined by an intensity-based registra-
tion framework, which includes two steps: (a) estimating
a global affine transformation, and (b) estimating a local
deformable transformation. The resulting transformation
is a composition of three calculated transforms. We used
a transformation composition and an online interpolator
which allowed minimizing the pixel intensity computa-
tion error. The results of the developed registration
scheme showed that we can achieve high-quality align-
ment of multimodal images of similar morphology. The
obtained results suggest that with the proposed registra-
tion scheme, clinically labeled regions of the H&E
stained image can be automatically transferred into the
FTIR image. In addition, through alignment, a tissue
sample can be thoroughly analyzed using two comple-
mentary sources of information. To our knowledge, there
is only one openly accessible algorithm [12] for image
registration of FTIR images with H&E images, which is
focused on the automation of image registration. We
address specifically the issue of the quality of the image
registration and present a framework for image registra-
tion of FTIR and H&E stained images. We further publi-
shed the source code of the framework presented in this
paper as an open access algorithm on https://github.
com/BioSpecNorway/IRmHiRegistration.

Since morphological information is needed for image
registration, we based our grayscale representation of
FTIR images on a parameter that represents the effective
optical path length. This is in line with the calculation of
the optical density images for the H&E images. Moreover,
the proposed approach of FTIR-to-grayscale representa-
tion can be applied to other imaging techniques such as
Raman [50] and NIR [14] where the EMSC method can
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be used in the same manner. We showed visually that
grayscale representations that are obtained from the
parameter related to the effective optical path length
show a high contrast and is in agreement with the mor-
phological features contained in H&E images. We
showed further that the FTIR-to-grayscale method based
on the SD calculated for each spectrum, which was used
in Reference [13], show a tiling effect in several images.
This tiling effect was nicely separated by the EMSC
parameters and does not affect the multiplicative
b parameter of an EMSC model. To our knowledge, the
tiling effect was not yet explored in the literature. How-
ever, we saw the evidence that among the EMSC parame-
ters, the parameter b is strongly related to the sample
morphology and is free from the tiling effect. Thus, we
suggest to use this parameter to build the grayscale repre-
sentation of the FTIR image.
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