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Abstract
In the context of biomarker discovery and molecular characterization of diseases, laser capture
microdissection is a highly effective approach to extract disease-specific regions from complex,
heterogeneous tissue samples. These regions have to be decomposed into feasible fragments as they
have to satisfy certain constraints in size and morphology for the extraction to be successful. We
model this problem of constrained shape decomposition as the computation of optimal feasible
decompositions of simple polygons. We use a skeleton-based approach and present an algorithmic
framework that allows the implementation of various feasibility criteria as well as optimization
goals. Motivated by our application, we consider different constraints and examine the resulting
fragmentations. Furthermore, we apply our method to lung tissue samples and show its advantages
in comparison to a heuristic decomposition approach.
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1 Introduction

Laser capture microdissection (LCM) [14] is a highly effective approach to extract specific cell
populations from complex, heterogeneous tissue samples and has been used extensively in the
context of biomarker discovery [15] as well as the molecular characterization of diseases [17].
Since LCM separates homogeneous and disease-specific regions from their heterogeneous
and unspecific surrounding tissue regions, the characterizations obtained from genomic,
transcriptomic or proteomic characterizations of samples processed with LCM provide more
accurate molecular markers of diseases [9, 20]. With LCM being used more and more
commonly in clinical studies, there is a need to automate all procedures involved in sample
processing.
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Problem Statement

In our present contribution, we address one central problem of processing samples with LCM.
Namely that the regions of interest (ROIs) consist of complex shapes of varying size which in
general cannot be extracted in one piece from the tissue sample. Rather, the ROI needs to
be fragmented into small subregions that satisfy certain constraints in size and morphology:
Fragments must not exceed certain limits of minimal or maximal size and should be of
approximately round shape. If a fragment does not meet these constraints, it cannot be
properly extracted from the surrounding tissue. This negatively affects the sample quality
and thus compromises the advantages of LCM-based sample preparation.

By interpreting each connected component of the ROI as a simple polygon, we can model
this problem of constrained shape decomposition as the computation of optimal feasible
decompositions of polygons. The constraints can be modeled as certain feasibility criteria
and optimization goals. Our decomposition method utilizes a skeleton of the shape and
follows a dynamic approach. Specifically, we restrict our cuts to certain line segments based
on the skeleton. This not only results in simple cuts but also in a flexible framework that
allows to integrate various criteria. With respect to our application, we consider different
criteria regarding for example the area, convexity or fatness of a polygon or the length of
inserted cuts. However, other constraints as well as combinations of multiple criteria are
possible.

Application

Our contribution is motivated by an application introduced in [15] in which the ROI to
be dissected from the tissue sample is identified using label-free hyperspectral infrared
microscopy. In this approach, an infrared microscopic image of the sample yields infrared
pixel spectra at a spatial resolution of about 5 µm. A previously trained random forest
classifier assigns each pixel spectrum to one tissue component such as healthy or diseased, with
the diseased class being further subdivided into inflamed tissue as well as several subtypes of
thoracal tumors. The general sample preparation task in the context of LCM is to dissect all
tumor regions (or all regions identified as one specific tumor subtype) from a sample. While
our current contribution deals with the specific context of label-free infrared microscopy,
our shape decomposition approach equally applies more broadly to LCM in the context
of other microscopic modalities, most notably H&E stained images [9] for which recent
digital pathology approaches facilitate reliable computational identification of disease specific
regions [26, 28].

2 Related Work

Polygon decomposition is an important tool in computational geometry, as many algorithms
work more efficiently on certain polygon classes, for example convex polygons [16]. Moreover,
polygon decomposition is frequently used in applications such as pattern recognition or image
processing [16]. Object recognition, biomedical image analysis and shape decomposition
are typical areas of application that utilize skeletons [23]. Skeletons are oftentimes used to
analyze the morphology of a given shape and work especially well on elongated structures,
such as vessels [11], pollen tubes [27] or neuron images [19, 24]. There are several shape
decomposition methods based on the skeleton or some other medial representation of a
shape. However, most of these methods are designed for object recognition and thus focus on
decomposing a shape into “natural” or “meaningful” parts [22, 18, 21]. In some approaches



L. Selbach, T. Kowalski, K. Gerwert, M. Buchin, and A. Mosig 13:3

even decompositions with overlapping parts are allowed [10, 25]. None of the established
decomposition methods facilitate a straightforward introduction of adjustable size and shape
constraints as needed for our application.

We utilize the skeleton for two main reasons: it is well-established to represent shape
morphology and has proved useful for shape decomposition previously. As cancerous tissue
regions often present themselves as highly complex and ramified shapes, we apply the skeleton
to obtain a morphological representation, based on which we compute a decomposition that
includes the morphological features.

3 Methods

As an input, we receive a binary mask of a microscopic slide with the region of interest
(ROI) as the foreground (Fig. 1a). After a preprocessing step, the foreground is reduced
to connected components without holes. We can interpret each of these components as
a polygon by taking each boundary pixel as a polygon vertex. The goal is to produce a
decomposition of each component in such a way that the fragments fulfill certain constraints
in size and morphology. We compute this fragmentation using a skeleton-based approach for
polygon decomposition (Fig. 1b).

(a) Selection of one region of interest in a histopathological tissue sample (H&E-stained image of a
subsequent sample on the left) in which different regions have been identified using the method in [15].

(b) After a preprocessing step, each connected component is a simple polygon without holes and is
decomposed using the method presented in this paper.

Figure 1 Decomposition of ROI polygons in a histopathological tissue sample.

3.1 Skeleton of a shape
Our approach is based on the medial axis or skeleton of the polygon. The medial axis of a
shape is the set of points that have more than one closest point on the shape’s boundary. The
medial axis was introduced for the description of biological shapes [3, 4] but is now widely
used in other applications such as object recognition, medical image analysis and shape
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decomposition [23]. An important property is that the medial axis represents the object and
its geometrical and topological characteristics while having a lower dimension [8, 29].

Formally, the medial axis of a shape D is defined as the set of centers of maximal disks
in D. A closed disk B ⊂ D is maximal in D if every other disk that contains B is not
contained in D. A point s is called skeleton point if it is the center of a maximal disk B(s)
(see Fig. 2). For a skeleton point s, we call the points where B(s) touches the boundary the
contact points – every skeleton point has at least two contact points. A skeleton S is given
as a graph consisting of connected arcs Sk, which are called skeleton branches and meet at
branching points. Given a simple polygon without holes the skeleton is an acyclic graph.

s

B(s)

c1

c2

c3

Figure 2 Medial axis of a simple shape. The skeleton point s is a branching point with three
contact points c1, c2, c3.

There are various methods for the computation of the medial axis in practice [23]. In
general, the medial axis is very sensitive to noise in an object’s boundary. This is a problem
that often occurs in digital images and leads to spurious skeleton branches. Therefore, many
approaches apply some kind of pruning method to remove those branches. In our application,
we have a discrete input and a discrete output is expected. Because of that, we use a
skeletonization algorithm that computes a discrete and pruned skeleton, which consists of
a finite number of skeleton pixels as our skeleton points [2]. Furthermore, the computed
skeleton has the property that every branching point has a degree of exactly three.

3.2 Skeleton-based polygon decomposition
We consider the following problem: Given a simple polygon P , compute an optimal feasible
decomposition of P . A decomposition is feasible if every subpolygon is feasible, in the sense
that it fulfills certain conditions on for instance its size and shape. We present an algorithmic
framework that allows the integration of various criteria for both feasibility and optimization,
which are discussed later. As for now, we only consider criteria that are locally evaluable.

In our skeleton-based approach, we allow only cuts that are line segments between a
skeleton point and its corresponding contact points. Thus, the complexity of our algorithm
mainly depends on the number of skeleton points rather than the number of boundary points
of the polygon. Every subpolygon in our decomposition is generated by two or more skeleton
points. We present two decomposition algorithms: One in which we restrict the subpolygons
to be generated by exactly two skeleton points and a general method. In the first case, each
subpolygon belonging to a skeleton branch can be decomposed on its own and in the second
case the whole polygon is decomposed at once.

Decomposition based on linear skeletons

First, let us consider the restriction that the subpolygons are generated by exactly two
skeleton points. In this case, the corresponding skeleton points have to be on one skeleton
branch Sk. In our work, a branching point belongs to exactly three branches and has exactly
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three contact points. When a branching point generates a subpolygon with another skeleton
point on an adjacent branch, we choose those two line segments that correspond to this
branch. Due to the Domain Decomposition Lemma (see Fig. 3, proof in [8]) and the following
corollary, we can decompose each skeleton branch on its own.

I Theorem 1 (Domain Decomposition Lemma). Given a domain D with skeleton S(D), let
p ∈ S(D) be some skeleton point and let B(p) be the corresponding maximal disk. Suppose
A1, A2, . . . , Ak are the connected components of D \B(p). Define Di = Ai ∪B(p) for all i.
Then:

S(D) =
k⋃

i=1
S(Di).

Moreover, we have

S(Di) ∩ S(Dj) = p ∀ i 6= j.

I Corollary 2. Let p ∈ S(D) and A1, A2, . . . , Ak be as above. For each skeleton point q 6= p

exists an i such that all contact points of q are contained in Ai.

p
p

p p

q

q

Figure 3 Domain Decomposition Lemma.

Let Sk be a skeleton branch with a linear skeleton of size nk and let Pk be the polygon
belonging to this branch. By Pk(i, j), we denote a subpolygon that is generated by two
skeleton points i and j on Sk (see Fig. 4). Thus, we have Pk(1, nk) = Pk. First, we consider
the decision problem. Note that there exists a feasible decomposition of a polygon Pk(i, nk)
if either

Pk(i, nk) is feasible or
there exists j > i such that Pk(i, j) is feasible and Pk(j, nk) has a feasible decomposition.

Thus, we can solve the problem by using dynamic programming and use backtracking to
compute the corresponding decomposition. We can include different optimization criteria by
choosing an optimal point j.

I Lemma 3. Given a subpolygon Pk with a linear skeleton Sk consisting of nk points, one
can compute a feasible decomposition of Pk based on Sk in time O(nk

2F ), with F being a
factor depending on the feasibility criteria.

WABI 2020
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ji

Pk(i, j)

1nk Sk

Figure 4 Polygon Pk belonging to a skeleton branch Sk.

Proof. For every skeleton point i, for i = nk − 1 down to 1, we compute X(i) such that
X(i) equals True if there exists a feasible decomposition of Pk(i, nk). To compute X(i), we
consider O(nk) other values X(i′) for i < j ≤ nk and check in time O(F ) if the polygon
Pk(i, j) is feasible. The correctness follows inductively. J

The factor F is determined by the runtime it takes to decide whether a subpolygon is feasible.
This factor might depend on for instance the number of points in the skeleton or in the
boundary of the polygon. We discuss examples in the following section. After computing
decompositions for each subpolygon corresponding to a skeleton branch, we can combine
those to obtain a decomposition of the entire polygon. This leads to the following result.

I Theorem 4. Given a simple polygon P with skeleton S consisting of n points, one can
compute a feasible decomposition of P based on the skeleton branches of S in time O(n2F ),
with F being a factor depending on the feasibility criteria.

Note that there might not exist a feasible decomposition of the entire polygon or for certain
subpolygons. By using this method, we are able to obtain partial decompositions. Thus, this
approach can be favorable in practice.

General decomposition

In the general setting, subpolygons are allowed to be generated by more than two skeleton
points. In this paper, we will briefly explain the idea of our method (see [5] for a more
detailed description and the corresponding formulas). Recall that our skeleton is an acyclic
graph consisting of a finite number of vertices, i.e. skeleton points. The skeleton computed
for our application (method of Bai et al. [2]) has the property that the maximal degree of a
skeleton point is three. We select one branching point as a root and consider a rooted skeleton
tree. Since branching points belong to three different branches, these nodes are duplicated in
the skeleton tree such that each node corresponds to the cut edges on the respective branch
(see Fig. 5). Our method and its runtime are based on two main observations.

I Observation 5. The maximal number of skeleton points that can generate a subpolygon
is equal to the number of endpoints in the skeleton, i.e. the number of leaves in the skeleton
tree.

IObservation 6. Every subpolygon can be represented as the union of subpolygons generated
by just two skeleton points.

Let i be a node in the skeleton tree and Ti the subtree rooted in i. By P (i), we denote
the subpolygon ending in the skeleton point i. This polygon corresponds to the subtree Ti in
the given tree representation (see Fig. 6). For each node i (bottom-up), we compute if there
exists a feasible decomposition of the polygon P (i). Such a decomposition exists if either
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Figure 5 Representing the skeleton graph as a tree rooted at the point r.

Figure 6 Subpolygon P (i) ending in the skeleton point i and the corresponding subtree Ti.

P (i) is feasible or
there exists a feasible polygon P ′ ending in i and feasible decompositions of the connected
components of P (i) \ P ′.

Thus, we have to consider all different combinations of skeleton points that together with i
can form such a polygon P ′. In a top-down manner, we consider the different combinations
of nodes [i1, i2, . . . , il] such that ij ∈ Ti and Tij ∩ Tij′ = ∅ for all j 6= j′. The polygon P ′

corresponds to the subtree rooted in i with i1, i2, . . . , il as the leaves, depicted in blue in
Fig. 7. Note that we can compute P ′ as a union of subpolygons iteratively. We check if P ′ is
feasible and we have feasible decompositions for each P (ij), meaning every subtree Tij

(gray
in Fig. 7). Because of Observation 5, we know that l ≤ k, for k being the number of leaves in
the skeleton tree. We have a feasible decomposition of the whole polygon if there exists one
of the polygon P (r). This computation dominates the runtime with the maximum number
of combinations to consider being in O(nk). Note that this approach does not depend on the
initial choice of the root node.

I Theorem 7. Given a simple polygon P with skeleton S consisting of n points with degree
at most three, one can compute a feasible decomposition of P based on S in O(nkF ) time,
with k being the number of leaves in the skeleton tree and F as above.

3.3 Feasibility constraints and optimization
Our decomposition method is highly versatile framework that can be adjusted for different
feasibility constraints and optimization goals. In the following, we present a few examples
of criteria we considered with regard to our application. As stated before, the ROI in our
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Figure 7 Different possibilities of skeletons points to consider when computing the decomposition
of P (i).

tissue sample needs to satisfy constraints in size and morphology for the LCM. In LCM, a
laser separates a tissue fragment from its surrounding sample and a subsequent laser pulse
catapults the fragment into a collecting device. On the one hand, the fragment has to have a
certain size to ensure that enough material is supplied to be analyzed. On the other hand,
the size cannot be too large otherwise the transferring process will fail. The transferring
process also fails if the fragment has an irregular shape, since the laser pulse is concentrated
on only one boundary point of the fragment. Specifically, elongated shapes or objects with
narrow regions (bottlenecks) are problematic, as the tissue can tear and is only transferred
partly or not at all. For simplicity, we consider only polygons with a linear skeleton in the
following, but all mentioned constraints can be applied to the general decomposition method
as well.
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Feasibility constraints

First, we consider the size constraint by constraining the area of the subpolygons. Given
two bounds l and u, a polygon P is feasible if l ≤ A(P ) ≤ u, for A(P ) being the area of
the polygon. Instead of the area one could also constrain the number of boundary points.
Regarding a shape constraint for the polygons, we considered approximate convexity and
fatness. For the convexity, a polygon P would be feasible if every inner angle lies between two
given bounds. However, this does not prevent elongated shapes. By constraining the fatness
of a polygon, we can achieve less elongated shapes. Fatness is defined by the aspect ratio
AR(P ) of a polygon, which is the ratio of its width to its diameter. For a simple polygon,
the diameter is defined as the diameter of the smallest enclosing circle and the width as
the diameter of the largest inscribed circle. The aspect ratio lies in [0, 1] and the higher its
value the more circular and less elongated the shape is. We have the following constraint: A
polygon is feasible if it is α-fat, meaning that AR(P ) ≥ α given some parameter α.

For all these feasibility criteria, we can compute all feasible subpolygons beforehand in
time O(m) for m being the number of polygon vertices. Thus, we are able to verify if a
subpolygon is feasible in constant time, which leads to an overall runtime of O(n2 +m) to
compute a feasible decomposition of the polygon.

Optimization goals

To solve the decision problem, we assign a value X(i) to every skeleton point i. This value
equals True if there exists a feasible decomposition of the polygon P (i, n) and False otherwise.
We initialize X(1) = True and compute X(i) as described before, that is X(i) = True if there
exists j ≥ i such that P (i, j) is feasible andX(j) = True. We can defineX(i) in different ways
to achieve various optimization goals. For a point i, let I be the set of points j such that P (i, j)
are feasible. One possible optimization goal would be to find the minimal decomposition
(MinNum). We defineX(i) as the number of subpolygons in an optimal feasible decomposition
of P (i, n), set X(1) = 0 and compute X(i) = minj∈I X(j) + 1. If one prefers the cuts to be
at bottlenecks of the polygon, one could also consider minimizing the length of the cut edges
(MinCut). Since every skeleton point i is the center of a maximal disk, we can obtain the
cut length by the corresponding radius r(i). We can define X(i) either as the length of the
longest cut or as the sum of cut lengths in the optimal decomposition of P (i, n) and compute
X(i) = max{minj∈I X(j), r(i)} resp. X(i) = minj∈I X(j) + r(i). Another optimization goal
we considered is maximizing the fatness (MaxFat). We define X(i) as the smallest aspect ratio
of a subpolygon in the decomposition and compute X(i) = maxj∈I{min{X(j), AR(P (i, j))}}.
The runtime of the algorithm stays the same for different optimization goals. Obviously, one
can combine different feasibility criteria and optimization goals.

The versatility of our algorithm allows the implementation of many different criteria. Note
that for certain combinations other (faster) methods might exist. One example is finding the
minimal (MinNum) decomposition in which the area of the subpolygons is bounded. For
polygons with linear skeletons this can be modeled as finding the minimal segmentation of
a weighted trajectory (in O(n logn) time [1]). For general polygons, this problem can be
modeled as computing the minimal (l, u)-partition of a weighted cactus graph (in O(n6)
time [6, 7]).

WABI 2020
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4 Results

We evaluated our algorithm by computing decompositions of tumor regions in infrared
microscopic images of lung tissue samples that were identified using the method in [15].
With the tumor regions as our ROI, we decomposed each connected component by applying
our algorithm on each branch of the corresponding skeletons separately. This approach
follows the practical consideration that a polygon as a whole may not possess a feasible
decomposition, while some individual branches do. We assessed the decomposition outcome
in two respects. First, we present the differences in the decompositions when using different
feasibility criteria and optimization goals. Then, we compare our decomposition approach
based on the maximal fatness (MaxFat) to a heuristic recursive bisection method (BiSect)
that was used to decompose tissue samples for LCM in previous work [15].

4.1 Comparison of feasibility constraints and optimization goals
Our algorithm facilitates the use of a wide range of feasibility criteria and optimization goals.
The number of subpolygons as well as the positions of cuts depend on these constraints.
Having a larger upper bound on, for example, the maximal area of a subpolygon results in
fewer subpolygons, as illustrated in Fig. 8a and 8b. These decompositions both minimized
the number of subpolygons, but the solutions are not necessarily unique and one optimal
decomposition is chosen arbitrarily. This can be seen at the bottom-most skeleton branch
in both polygons as the decomposition in Fig. 8a would be feasible with the constraints in
8b as well. In Fig. 8c and 8d, a fatness criterion has been added through a lower bound
on the aspect ratio of subpolygons. This criterion avoids the tendency towards elongated
subpolygons that can be observed in Fig. 8a. If the bounds in some constraints are too
tight, a feasible decomposition might not exist. We illustrate this case in Fig. 8d, where the
algorithm did not decompose the polygon parts depicted in gray. This is not favorable for
our application, as it reduces the amount of extracted tissue material.

Regarding size as the feasibility criterion, we applied the different optimization goals
described in Section 3.3, which we denoted by MinNum, MinCut and MaxFat. While choosing
a different optimization criterion will not affect the area of the polygon that is successfully
decomposed, the amount and positions of cut edges may change significantly. These changes
may have an influence on the amount of successfully extracted fragments with LCM in
practice later on. If we look at the decompositions of the top left skeleton branch, we can
see that in Fig. 8a and 8e we have the same number of fragments, but with MinCut a cut
with a lower length is chosen. However, maximizing the fatness of each subpolygon usually
results in a higher number of subpolygons, but, as can be seen in Fig. 8f, each subpolygon is
less elongated and somewhat rounder in shape. We expect these to be the desired shapes for
our application. Thus, we used this optimization goal in the comparison of decomposition
methods.

4.2 Comparison to BiSect
In this section, we evaluate our method with respect to its benefits for LCM. As mentioned
before, the success of tissue extraction with LCM highly depends on the size and shape
of the given tissue region. For the comparison, we applied the algorithm that maximizes
the fatness (the aspect ratios) of the computed subpolygons while using a size constraint
(lower and upper bound on the subpolygon’s area). We denote this approach by MaxFat and
compare it to a heuristic method we call BiSect. This method decomposes a polygon by
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(a) area in [50, 300],
MinNum.

(b) area in [50, 500],
MinNum.

(c) area in [50, 300],
fatness ≥ 0.4, MinNum.

(d) area in [50, 300],
fatness ≥ 0.5, MinNum.

(e) area in [50, 300],
MinCut.

(f) area in [50, 300],
MaxFat.

Figure 8 Decomposition with different feasibility criteria and optimization goals.

recursively bisecting it if its area exceeds the upper size bound. If the area of a (sub)polygon
is below the given lower bound, it is discarded. For technical reasons with LCM, this method
is designed to leave a strip of tissue behind with every bisection (see Fig. 9).

We computed the decompositions of 10 different lung tissue samples with both methods
and the same area bounds, namely, a minimal and maximal area of 100 px and 2800 px
respectively. These 10 tissue samples contained 460 connected components of tumor regions
as our regions of interest (ROI). Each ROI covered in average an area of 4100 px. Hence, for
many ROIs the decomposition size with BiSect is fairly low. In fact, the average number of
subpolygons per ROI was 2.3 for BiSect, but 9.3 for MaxFat.

Assessing the quality of results is of key importance for comparing results between the
two methods. While an ideal assessment would compare the actual physical yield of tissue
material, such experimental validation was not available in our present study, so that we
rely on purely computational measures. Specifically, we employed two main measures: On
the one hand, the amount of tissue loss in both decompositions, and on the other hand, the
fatness of the resulting subpolygons, which as a single parameter captures reasonably how
favourable a specific shape is for LCM. While MaxFat in fact optimizes towards obtaining
fat fragments, it is still important to assess how far this translates into practice and how it
compares to the fatness obtained by BiSect.

WABI 2020
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(a) MaxFat BiSect

(b) MaxFat BiSect

(c) MaxFat BiSect

(d) MaxFat BiSect

Figure 9 Four example shapes decomposed by MaxFat (left) and BiSect (right).
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Area loss

First, we compare the amount of tissue loss (in percent) for each individual polygon/ROI.
Both methods inherently involve tissue loss. In BiSect, each bisection results in some tissue
loss, therefore, the amount of lost tissue rises with the number of subpolygons. In MaxFat,
however, we lose tissue only if no feasible decomposition exists for a given skeleton branch.
This mainly occurs when the corresponding (sub)polygon is either too slim or too wide. The
first case is depicted in Fig. 9a: The polygons belonging to the bottom two skeleton branches
(depicted in gray) are too small and thus no feasible decomposition was computed, resulting
in this area being lost. This can be attributed to shortcomings of the underlying skeleton
pruning method [2]. Improving the pruning of the skeleton may avoid such short branches.
The second case of too wide (or fat) shapes is exemplified in Fig. 9d: In our approach, cut
edges are introduced as line segments between a skeleton point and its closest boundary
points. In the case of a wide shape being decomposed using a small upper bound for the size
constraint, this leads to either thin-slicing or no feasible solution at all. This illustrates that
our approach is tailored towards complex, ramified shapes rather than fat objects whose
interior can be decomposed effectively through a simple grid pattern. It is also noteworthy
that Polygon in Fig. 9d covers an area of around 43000 px and therefore presents an huge
outlier in our sample.

The mean area loss with MaxFat is lower than the mean area loss with BiSect (see Fig. 10),
yet with a greater variability in values and some high-loss outliers, which can be assigned
to large and fat objects. While such objects do not occur frequently in our samples, the
resulting area loss is obviously very high. This contributes to the higher standard deviation
that we observe when considering the individual ROIs. Since the resulting fragments for
each component in one tissue sample are collectively gathered, it is reasonable to validate on
the level of samples and determine the entire yield for all ROIs in each sample. As can be
seen in Table 1, the decomposition with MaxFat yields overall more tissue (with respect to
area) to be collected for most tissue samples.

Fatness

It is important to note that the success of tissue collection using LCM depends not only on
the size but also the shape of the fragments. BiSect applies merely a size constraint, whereas
MaxFat considers both factors. While BiSect only decomposes polygons that exceed the
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(a) MaxFat (M=8.84%, STD=11.18),
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BiSect (M=0.35, STD=0.11).

Figure 10 Comparison of the distribution of the percentage of area loss and the average fatness
in the decompositions with MaxFat and BiSect for each ROI (n=460).
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Table 1 Comparison of the yielded area (in %) of the different decomposition methods.

Sample 1 2 3 4 5 6 7 8 9 10
MaxFat 91.42 78.57 94.78 76.15 96.58 88.29 96.60 86.44 89.55 94.78
BiSect 89.38 81.96 86.56 76.59 86.53 80.98 87.00 85.41 81.52 86.56
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Figure 11 Distributions of the aspect ratios for each subpolygon in the decompositions with
MaxFat and BiSect for all samples combined.

given upper size bound, MaxFat searches for an decomposition in which the subpolygons have
the highest possible aspect ratios. This obviously results in a higher number of subpolygons
over all samples: MaxFat resulted in 4285 and BiSect in 1066 fragments. In some cases, the
size of a ROI did not make it necessary to place any cut when decomposing with BiSect,
but the shape of the ROI oftentimes is too complex or irregular for LCM to be successful.
Additionally, the cut placement with BiSect is far from being optimal.

As can be seen in the examples of Fig. 9b and 9c, the shapes resulting from BiSect are
highly irregular – except for most “internal” subpolygons in large, round ROI. In most cases,
the resulting subpolygons are far from being convex (in an approximate sense), but elongated
and show narrow bottlenecks. All these shape properties pose a risk for the tissue to tear in
the extraction process. With the MaxFat approach, however, we overall receive less elongated
and rounder shapes. When comparing the average fatness – meaning the average of aspect
ratios of the subpolygons – in the decompositions for each ROI (Fig. 10), we clearly achieved
higher values with MaxFat with a smaller variability. In fact, for over 75 % of ROI our
method achieved an average fatness higher than 0.5, whereas with BiSect nearly 75 % of ROI
have an average fatness lower than 0.4. When comparing the distribution of aspect rations
for the individual subpolygons, it is revealed that BiSect shows the pattern of a normal
distribution, whereas the distribution for MaxFat is clearly left-skewed (see Fig. 11). This
shows that without applying additional shape constraints the decomposition does not result
in fragments of the desired shape whereas our method consistently obtains such fragments.

5 Conclusion

In this paper, we presented a skeleton-based decomposition method for simple polygons as
a novel approach to decompose disease-specific regions of tissue samples while aiming to
optimize the amount of tissue obtained by laser capture microdissection (LCM). Compared
to naive heuristic approaches that are currently used, our approach provably optimizes
target functions under side constraints that are tailored towards relevance for tissue yield in
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LCM, as this requires fragments of suitable size and morphology to minimize tissue loss. As
we demonstrated, these theoretical properties translate into practice when comparing our
approach to a recursive bisection approach that considers fragment size as the only criterion
for decomposition.

Our approach is designed towards complex morphological structures that are commonly
found in cancerous tissue and are usually the most challenging to extract using LCM without
major loss of tissue mass. Not surprisingly, it does not perform well when fragmenting
relatively fat shapes into small fragments. In this case, it is expected to yield thin slices
not ideal for LCM or find no feasible decomposition at all. Yet, such fat shapes does not
occur frequently and can easily be decomposed using simple approaches, e.g. bisection-based
approaches, without major tissue loss. Thus, we expect to achieve the best outcome for
the practical application if we combine both approaches. Our method can be used for the
majority of the complex tissue regions and for simple fat morphologies, which can be easily
distinguished and separated, other approaches can be applied.

The implementation of our approach relies on a skeletonization of the underlying polygons.
Specifically, we utilizes the approach by Bai et al. [2], which implements a heuristic pruning
approach. It is likely that recent improvements for skeletonization and pruning [12, 13] will
further improve results, as in particular the pruning step of these recent methods promises
to avoid short and other spurious branches which negatively affect the amount of yielded
tissue in our approach.

Finally, our validation is merely based on quantitative morphological indicators about
the resulting fragments. For future work, it will be important to validate the improvements
experimentally, e.g. by comparing the actual yield of protein or DNA from different ap-
proaches. Overall, our work contributes to further optimization and automation of LCM
and thus promises to contribute to the further maturing of the technology and enhancing its
suitability for systematic use in larger scale clinical studies.
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