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Abstract 

Infrared spectra obtained from cell or tis­

sue specimen have commonly been 

observed to involve a significant degree of 

scattering effects, often Mie scattering, 

which probably overshadows biochemi­

caUy relevant spectral information by a 

nonlinear, nonadditive spectral compo­

nent in Fourier transform infrared (FTIR) 

spectroscopic measurements. Correspond­

ingly, many successful machine leaming 

approaches for FTIR spectra have relied 

on preprocessing procedures that compu­

tationally remove the scattering compo-

nents (Tom an in(Tared spectrum. We 
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propose an approach to approx:imate this complex preprocessing function using 

deep neural networks. As we demonstrate, the resulting model is not just several 

orders of magnitudes faster, whicb is important for real-time clinical applica­

tions, but also generalizes strongly across different tissue types. Using Bayesian 

machirre leaming approaches, our approach unveils model uncertainty that 

coincides witb a band shift in tbe amide I region tbat occurs when scattering is 

removed computationally based on an established physical model. Furthermore, 

our p.roposed method overcomes the trade-off between computation time and 

the corrected spectrum being biased towards an artificial reference spectrum. 
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1 INTRODUCTION 

Fourier transform infrared (FfiR) spectroscopic imaging 
of biological samples provides pixel spectra at high spatial 
resolution which carry a highly informative fingerprint of 
the biochemical status of the sample. FfiR microscopy 
thus has been applied successfully in characterizing the 
disease state of tissue samples of different types from sev­
eral different organs.1-4 However, the raw spectra obtained 
from FfiR imaging experiments inherently suffer from 
scattering and the effect that Beer- Lambert's law is not 
applicable to such spectra, since the samples are heteroge­
neous.5·6 Following the chemical information cannot be 
obtained from the measured spectra without correctiion. 
The most prominent scattering effect in FfiR imaging of 
biological samples is Mie scattering,6-

10 which affect the 
absorbance spectra and complicates the data analysis.11 

This Mie scattering effect is observable when applying 
FfiR imaging to biological samples. Here, cells, nuclei or 
other cellular components within a certain size range7

•
8 

Iead to a Mie scattering effect. This modelled to the devel­
opment of first correction procedures12 based on the 
exlended multiplicative signal correction algorithm.13 This 
approach was extended by the authors of Reference 14, 
who introduced an iterative correction procedure for reso­
nant Mie scattering (RMieS). While this approach takes 
into account scattering only, it has recently been further 
improved upon by approximating the complete Mie extinc­
tion through complex valued refractive indices of the scat­
terers.15 In short, an FfiR pixel spectrum observed in an 
hyperspectral microscopic image can be a mixture of Mie 
scattering, non-linear effects, resonant absorption factors 
and other optical effects, which has led to the development 
of correspondingly complex computational correction pro­
cedures. None of these algorithms model yet the cor:rect 
electromagnetic theory to obtain pure absorbance spectra 
but each is weil suited for given applications. 

In FfiR imaging on biological samples several sturlies 
have shown that Mie scattering correction solely can help 
to provide spectra sufficient for classification. Therefore, 
we will concentrate here on this well established proce­
dure regardless of the justified discussion that there are 
other disturbing optical effects. While the very recent ME­
EMSe approach15 for Mie scattering correction promises 
great improvement over the less elaborate scattering 
model of the RMieS approach, our contribution is focused 
on the latter approach,14 which has been popular in a 

!arge range of studies.1·2·16 Throughout this manuscript, 
we will refer to the approach from Reference14 as RMieS 
correction. This approach employs a reference spectrum, 
which represents an idealized baseline of a scattering-free 
infrared spectrum. This spectrum is used iteratively to 
approximate the measured, distorted spectra to a corrected 
spectrum for classification using the exlended multiplica­
tive signal correction14

. Because of its iterative nature there 
is a strong trade-off of between time and accuracy to reach 
satisfactory results, making it computationally expensive. 

Deep learning approaches have recently impacted the 
preprocessing and classification of infrared microscopic 
spectra.17

-
19 Magnussen et al. introduced a convolutional 

neural network based autoencoder to recover absorbance 
spectra from scattered FfiR spectra.Z0 Based on a deep 
convolutional neural network, the scattered input spec­
trum is transformed into a 22-dimensional latent space, 
from which inverse convolutions recover the pure absor­
bance spectrum. The network is trained on scattered 
input spectra against their ME-EMSe corrected absor­
bance spectra; based on a reference dataset of single fun­
gal cell FfiR images, the absorbance spectra recovered 
from the neural network exhibit strong similarity to ME­
EMSe corrected spectra across different growth condi­
tions. In a similar direction, the authors in Reference19 

introduced an approach that employs a one-dimensional 
variant of the U-Net architecture21 that approximates the 
removal of scattering resulting from poly(methyl methac­
rylate) (PMMA) spheres to recover "pure absorbance" 
spectra. As training data, the authors in Reference 19 use 
simulated scattering following a PMMA sphere specific 
model proposed in References 22 and 23. 

In another recent contribution, we demonstrated that 
in the presence of sufficient data for training, deep neural 
networks may circumvent RMieS correction algorithm.18 

This approach is based on representation learning24
, spe­

cifically by employing the approach introduced in Refer­
ence 25 to perform unsupervised pre-training followed by 
supervised fine-tuning to classifY pixel spectra into a dis­
crete set of classes, that is, tissue components. 

While the neural network introduced in Reference 18 
involves training data obtained from RMieS corrected 
spectra and thus involves RMieS correction in an implicite 
manner, the model possesses no explicit knowledge of Mie 
scattering. Yet, it has been hypothesized in Reference 18 
that, due to the strong generalization capability of the net­
work, it may have leamed to disentangle the raw spectra 
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into an abstract representation that separates scattering 
from the molecular spectrum. Our present contribution 
further investigates this hypothesis by explicitly train.ing 
the network to approximate the complex function com­
puted by the RMieS correction procedure. The rationale 
behind our present study is roughly as follows: We replace 
the final layer of a pretrained classitying neural network 
by a regression layer to learn RMieS correction- if super­
vised finetuning of the pretrained regression network suc­
cessfully leams RMieS correction, this provides evidence 
about the disentanglement in the classifying network, 
namely that the pretraining helps to disentangle those var­
iances that are due to resonant Mie scattering. 

Bayesian approaches are a folklore approach to assess 
the statistical uncertainty of neural network classifications 
by considering the edge weights of a neural network as 
being sampled from a statistical process.Z6.27 In the context 
of deep neural networks, Bayesian approaches have 
recently become particular relevant through dropout­
leaming, where neurons in specific layers are randomly 
deactivated.28 This relatively simple idea has been coupled 
with Bayesian statistics in the seminal recent work by Gal 
et al.29 whicb yields Bayesian uncertainties for output vari­
ables of neural networks that can be trained very effi­
ciently using dropout leaming. Applied to neural 
networks that approximate physical models, as investi­
gated in our present contribution, this approach is highly 
attractive to estimate confidence of both the trained neural 
network and the underlying physical model. 

In a broader context, deep neural networks were a 
major driver for recent progress in the analysis of micro­
scopic image data. In fluorescence microscopy, for exam­
ple, deep neural networks have been employed to 
compensate for spatial or temporal undersampling30 or to 
enhance confocal rnicroscopic images to Superresolution 
imagery.30

•
31 In another recent contribution, Ounkomol 

et al. 32 demonstrated the inference of fluorescence micro­
scopic images from transmitted light micropscopy. A per­
spective ernerging from these contributions is that deep 
neural networks have the ability to approximate physical 
processes behind different microscopic modalities, which 
has been an important ingredient for the rapid progress 
driven by deep neural networks in the analysis of bio­
medical images of both cellular33 and tissue34 samples_ 
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embedded (FFPE) thin-sections of colon cancer associated 
tissue samples, sliced into 5 llill sections placed on LowE 
slides (Kevley Technologies, Chesterland, OH, USA). Infra­
red rnicroscopic images were acquired using a Cary 620 
infrared microscope by Agilent (Santa Clara, Califomia, 
USA) in combination with a Cary 670 spectrometer in trans­
flection mode and using a focal plane detector with 
128 x 128 elements. The resulting raw spectra in the spec­
tral range between 3700 and 950 cm-1 were preprocessed 
using the resonance-Mie correction procedure from Refer­
ence35 applied to the spectral range from 2300 to 950 cm-1

• 

The samples were subdivided into one dataset FFPEr1 for 
pretraining (see Section 3), and one dataset FFPEn for super­
vised training (finetuning) the regression-model. The tissue 
microarray data from Reference 18 were used for training 
using an identical subdivision into training and validation 
data as described in Reference 18. Whole-slide images from 
Reference 2 were used as independent test sets. 

3 APPROACH 

Our generat approach is to extend the stacked 
autoencoder based network topology and training 

Pretraining (unsupervlsed) Finetuning (supervised) 

(A) X X' (C) Classification (Raulf et al .• 20201 
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FIGUR E 1 Overview of our approach to LTain a regression 

network (panel D) lhat approximates rcsonant Mie scattering 

(RMieS) correction based on unsupervised pretraining through 
stacked autoencoders (panels 1\ and B). The approach is similar to 
lhe tissue component classifier prooosed in Reference 18 (pancl C). 
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processes behind different microscopic modalities, which 
has been an important ingredient for the rapid progress 
driven by deep neural networks in the analysis of bio­
medical images of both cellular33 and tissue34 samples. 

2 METHODS 

2.1 Dataset 

For our study, we used datasets from References 2 and 18 
that we briefly recapitulate for the sake of completeness. All 
samples were recruited from Formalin fixed parrafin 

v~.., 
0 

FIGUR E 1 Overview of our approach to train a regression 
network (panel D) that approximates resonant Mie scattering 

(RMieS) correction based on unsupervised pretraining through 

stacked autoencoders (panels A and B). The approach is similar to 
the tissue component classifier proposed in Reference 18 (panel C). 

Each output neuron of the regression network (indicated in dark 

red in panel D) leams regression of one specific wavenumber of the 

RMieS corrected spectrum, the regression loss is measured as the 

root-mean-squared error between the physical model R(X) and the 

approximation So(X) across all data points X 
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procedure from Reference 18 for classifying infrared pixel 
spectra to obtain a neural network that approximates the 
RMieS correction procedure from Reference 35 as illus­
trated in Figure 1. In fact, we used the RMieS correction 
implementation described in Reference 35 to produce 
training and validation data; to introduce some essential 
notation, we denote an RMieS corrected spectrum y = R 
(x), where R denotes the RMieS correction procedure and 
x an uncorrected raw spectrum from one of the datasets. 

Specifically, we use the paradigm of unsupervised 
pretraining as established in References 25 and 36, where 
an unsupervised pretraining on unlabeled data is used to 
give the initial mode for the used weight matrices in 

RAULF ETAL. 

further training stages. While in Reference 18, these pre­
trained models underwent supervised finetuning to train 
a classifier network, this present contribution deals with 
a regression network aiming to approximate the RMieS 
correction function rather than aiming to classity pixe] 
spectra. In other words, we deal with a neural network 
whose output layer represents Mie-corrected infrared 
spectra. To this end, we replace the transfer function of 
the output layer from a softmax function commonly used 
for classitying networks to a Linear activation function 
suiting the requirements of a regression model. All 
regression models are based on an unsupervised Contrac­
tive Stacked Autoencoder25 which was trained only on 
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FI G URE 2 Panel A displays classification rcsults of the random f()fest classifier from Refcrcnce 1 applied to the Fourier transform 

infrared (FTIR) spectra corrected with the EMSC V2 implementation of the resonant Mie scattering (RMieS) correction. Panel ß displays 

classification results obtained from the same classifier, but spectra corrected using the EMSC VS implementation of the FTIR spectra. 2 Panel 

C displays spectra corrcctcd by the rcgression network S0 that was trained to approximate the corrcction as implementcd in EMSC V2. Tbc 

consistency of different preprocessing approaches was computed as an accuracy ofpanels B (.753) and C (.777) using panel Aas ground 

truth. Panels D and E display classification results of the random forest dassifier from Reference l , once applied to the FTTR spectra 

corrccted with thc EMSC V2 implementation oftheRMieS corrcction of a large whole-slide image (pancl D) and once applied to the spcctra 

corected using the apporximation through neural network So (panel E). The index color map of the dass Iabeis obtained fTom the random 

forest classifier is displayed in panel F 
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the FFPEpc dataset. Throughout the paper, we will use e 
to denote the parameters obtained from supervised fin­
etuning, and y = S"-x) the network with parameters fJ 
applied to input spectrum x, that is, the approximation of 
the corrected spectrum of x. During training, we used 
root mean square error as loss function. 

3.1 Validation measures 

We validate our trained model e on each of the validation 
datasets F at three Ievels. At the first Ievel, we investigate 
the root mean square error RMSE0 = L:x e F II R(x) 
- S"-x)ll -On a second Ievel ofvalidation, we used an exis­
ting random forest based classif'ier C from a previous 
study1 that classifies a Mie corrected spectrum y into one 
out of nineteen different tissue component classes C(y), 
and compared the output classes of the ground truth C(R 
(x)) with the classification obtained from an approxi­
mated correction, that is, C(So(X)). We will refer to the 
classifier C as a downstream model and thus refer to this 
validation approach as downstream validation. 

On a third Ievel of validation, we assess uncertainty 
of the trained regression model based on the Bayesian 
dropout approach proposed by Gal et al29, which system­
atically integrales the concept of dropout layers (ie, the 
randomized dropping of neurons in specific layers) into 
an approximation of a Gaussian process. The statistical 
processes can be introduced into trained neural networks 
by using the usual dropout28 not only as a tool to prevent 
overfitting on the training dataset but also during the test 
phase to randomly exclude 50% of neurons at test time. 
By excluding neurons at test time, one obtains a 
Bemoulli distribution over all different models of the 
trained network, which approximates the variational 
inference and finally approxirnates the deep Gaussian 
process. The latter step yields a tool to interpret deep 
neural networks as models by considering the prediction 
itself, the mean of the prediction and the variance of this 
process. 

The RMieS correction procedure is also highly time 
sensitive, which led us to validate the running time dif­
ference between the RMieS correction reference 

T ABLE 1 RunDing times obtained from RMieS correction 

reference implementation (EMSC) and the approximation by 

neural network (NN) for a dataset size of 360 000 spectra 

Model RMSC NN 
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irnplentation and its neural network approximator. As an 
iterative approach that needs to be applied to each indi­
vidual pixel spectrum in an infrared microscopic image, 
practical running times can amount to hours when deal­
ing with whole slide images that comprise tens of mil­
lions of pixel spectra,2 where several iterations of the 
RMieS correction procedure may be required to achieve 
high quality corrected spectra. At the same time, it is not 
Straightforward to implement the RMieS correction algo­
rithm in a way that the parallelization capability of 
graphics hardware can be fully exploited. 35 Here, the 
potential promise of an approximator network is a large 
increase in processing speed, since common neural net­
work frameworks can inherently and fully exploit para­
llelization capability. For the sake of comparability, 
graphics processing units were used only for training 

1665 1860 I&S!i ,.50 
'NVN{IJcmj 

EMSC 

NN 

1&45 1640 

NN 

EMSC 

Raw 

2400 2200 2000 1.800 1600 1400 1200 1000 800 

WVN{llcml 

- EMSC 

- NN 
, ... 1620 1600 1580 1560 ts•o 1S20 

'NVN(Uemj 

FI G URE 3 Middle: Example of an Fourier transform infrared 

(FTTR) spectrum from formal in fixed parrafin embedded (FFPE) 

lissue, shown as raw spectrum (black), corrected by the resonant 
Mie scattcring (RMieS) corrcction algoritbm from Rcference 14 
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The RMieS correction procedure is also highly time 

sensitive, which led us to validate the running time dif­
ference between the RMieS correction reference 

TAB L E 1 Running tim es obtained from RMieS correction 

reference implementation (EMSC) and the approximation by 

neural network (NN) for a dataset size of 360 000 spectra 

Model 

Time for val.-set 

Time per spectrum 

EMSC 

64.99 sec 

118.23 ~-~Sec 

Note: Recorded times were averaged over 10 runs each. 

Abbreviation: RMieS, resonant Mie scattering. 

NN 

10.65 sec 

28.96 ~-~Sec 

- EMSC 

- NN .... 1620 1600 1580 .... 1S20 
WVN(Ucm) 

FI G URE 3 Middle: Example of an Fourier transform infrared 

(FTIR) spectrum from formalin fixed parrafin embedded (FFPE) 

tissue, shown as raw spectrum (black), corrected by the resonant 
Mie scattering (RMieS) correction algorithm from Reference 14 

(blue) and corrected by the neural network So that approximates 

the RMieS correction. Both the amide I (top) and amide Il (bottom) 
peak exhibit a band shift when comparing to the reference 

implementation of RMieS correction (EMSC V2) and the 

approximating neural network (NN) 
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deep neural networks, while all computations, in particu­
lar applying the trained neural networks, were performed 
on conventionaJ CPU-based hardware onJy. 

3.2 Implementation 

We utilized two implementations oftheRMieS correc­
tion provided by the authors of4

. Henceforth, we will 
refer to these implementations as EMSC V2 and EMSC 
VS, respectively. The network So was trained using raw 
spectra as input and EMSC V2 corrected spectra as tar­
get output for regression learning. The EMSC VS 
implementation was used as a reference. AU neural 
networks were implemented using the Theano frame­
work, as described in Reference 18. 

4 RESULTS 

4.1 Downstream validation 

Figure 2 panels A-C shows the comparison of the vaJida­
tion dataset for the FFPE data using the random forest 
introduced in Reference 1 as downstream classi:fier that 
dassifies RMieS corrected spectra into one out of 19 dif­
ferent tissue components. Compared to the ground truth 
segmentation obtained from C(R(x)) for each pixel spec­
trum x, the approximation based classification consti­
tuted by C(S0(x)) achieves an accuracy of 78% across all 
pixels in the whole-slide image displayed in panels E and 
F in Figure 2. 

4.2 Running time 

To assess running times, we performed correction of 
a validation dataset of size 600 x 600 spectra. The 
time that has been recorded was averaged over 10 
different runs each and are summarized in the 
Table 1. 

4.3 I Characterization of approximation 
capabilities 

As indicated in Figure 3, the corrected spectra obtained 
:from network S0 approximate the RMieS correction func­
tion with only little error. However, the deviation around 
the amide I peak around 1650 cm- 1 is remarkabJy high. 
In fact, detailed inspection (Figure 3) indicates a band 
shift between the RMieS corrected ground truth spectrum 
and the neural network approximation, indicating a pos­
sibly unreliable approximation around the amide I 
reg:ion. To further assess this band shift, we performed 
Bayesian drapout validation, which yields a confidence 
interval at each wavenumber, as displayed in Figure 4. 
The confidence intervals are strikingly large around the 
amide I peak and coincide with an observed band shift 
between the neural network approximation and the 
RMieS corrected ground truth. Another expJanation for 
this shift can be the transflection measurements used 
here which suffer from an electric field standing wave 
effect. It is known that this interference effect leads to a 
shift in the ratio of absorption band..<;.8'

10
•
22

•
37 Perhaps the 

network approximates this effect too in difference to the 



18640648, 2020, 14, Downloaded from
 https://onlinelibrary.wiley.com

. By Ruhr-Universität Bochum
- on [17/12/2021]. Re-use and distribution is strictly not p

RAULF BT AL. 

RMieS. Unfortunately, this cannot be clarified based on 
the analyzed datasets within this work. 

5 I DISCUSSION AND 
CONCLUSION 

Our results clearly demoostrate that the RMieS correc­
tion for infrared spectra can be approximated by a neural 
network that produces practically useful corrected spec­
tra, while using only a fraction of the computation time. 
Beyond the immediate and practically highly relevant 
benefit in terms of computational speedup, our results 
also contribute to the understanding and interpreting of 
what deep neural network models have learned during 
supervised training. In fact, in Reference 18, it was 
hypothesized that autoencoder-based pretraining for a 
classifying neural network may have leamed to disentan­
gle raw infrared pixel spectra in a manner such that the 
variance due to resonant Mie scattering has been sepa­
rated from the variance that is due to vibrations at the 
molecular level. The fact that the same pretrained sta­
cked autoencoder allows to compute corrected spectra 
adds further support to this hypothesis. 

In general, it is important to keep in mind the inherent 
limitations of approximations obtained from deep neural 
networks as the one we have introduced here. In fact, the 
network function S0 we obtain is a very local approxima­
tion of the RMieS correction function R in the sense that it 
works primarily for input spectra that sufficiently resemble 
the training data. In other words, as long as a raw spec­
trum x is obtained from FFPE samples of colon tissue, 
applied to sirnilar substrate and spectroscopically mea­
sured in a sirnilar manner, then So(x) will produce spectra 
that will reliably resemble R(x), with the restriction that 
only a special scattering was considered here. For a more 
comprehensive view of all optical effects, a correction of 
the data based on Maxwell's equations must be used, 
which has, to the authors' best knowledge, not been 
applied in case of large FTIR imaging datasets so far. It is a 
highly relevant question for future research to train net­
works that work reliably on a broader set of inputs, e.g. 
across tissue from different organs and being either FFPE 
or fresh-frozen as weil as potentially being prepared on dif­
ferent substrate material, and optical corrections. 

An important question arising from our work and the 
recent related approach from Magnussen et al?0 is the 
choice of the network topology and the approach to train 
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procedures. While beyond the scope of the present contri­
bution, we believe that the three different validation 
approaches presented here will be helpful for a system­
atic comparison between the two procedures. Such com­
parison may also shed light on the disentanglement 
hypothesis ernerging from Reference 18: Does the latent 
space of the different types of autoencoders separate 
essential features of FTIR in spectra, and, specifically, 
can we identify a clear separation between scattering and 
absorbance components in the latent space? An answer 
to this question is beyond theoretical interest, since it 
facilitates the interpretation and characterization of what 
features a deep neural network has learned during train­
ing. Such understanding will greatly contribute to under­
standing the strengths and also the limitations of deep 
neural networks for infrared spectroscopy in biomedical 
applications. An improved understanding of physical 
effects in latent space will finally also help improve 
approaches based on convolutional neural networks38

-40 

that also take into account spatial information by classii)r­
ing or segmenting whole images or image patches. 

A natural and irnportant question arising from neural 
network based approximations of physical models is how 
reliable the approximations are. To address this, we have 
contributed a Bayesian approach where we could show 
that the confidence obtained from the Bayesian network 
coincides with deviations between physical model and 
neural network based approximation. In our present 
case, the observed uncertainty in the amide I region sup­
ports two opposite hypotheses: On the one hand, uncer­
tainty may resuJt from a weak approximation capability 
of the neural network. On the other hand, the uncer­
tainty may be inherent to the underlying physical model. 
While beyond the scope of our present contribution to 
resolve which hypothesis holds, the Bayesian approaches 
we introduce provide systematic means to not just inter­
pret the reliability of neural network approximations, but 
potentially also uncertainties resuJting from the approxi­
mated physical model itself. While we cannot fully 
resolve which of the two hypotheses holds, Bayesian esti­
mates of uncertainty are a useful way to inspect deep 
leaming models and are potentially useful in many appli­
cations of deep learning in vibrational spectroscopy. The 
dropout-based approach by Gaf9 is particular attractive 
since it is relatively easy to implement and has relatively 
modest demands in terms of computation time. 

Even with the limited generalization guarantee 
resulting from relatively limited training data, the com-
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highly relevant question for future research to train net­
works that work reliably on a broader set of inputs, e.g. 
across tissue from different organs and being either FFPE 
or fresh-frozen as well as potentially being prepared on dif­
ferent substrate material, and optical corrections. 

An important question arising from our work and the 
recent related approach from Magnussen et a1?0 is the 
choice of the network topology and the approach to train 
the network. It is currently an open question whether the 
convolutional neural networks from References 19 and 
20 or the pre-trained fully connected multi-layer 
perceptrons introduced here are more favorable for 
approximating the (different types of) EMSC correction 

mates of uncertainty are a useful way to inspect deep 
learning models and are potentially usefuJ in many appli­
cations of deep learning in vibrational spectroscopy. The 
dropout-based approach by Gaf9 is particular attractive 
since it is relatively easy to implement and has relatively 
modest demands in terms of computation time. 

Even with the limited generalization guarantee 
resulting from relatively limited training data, the com­
putational speedup constitutes a factor that makes our 
results promising from a practical perspective, since the 
high demand of computation time can easily become a 
road block in many practical settings, when e.g. dealing 
with whole slide images. 
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