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MACHINE LEARNING, COMPUTATIONAL PATHOLOGY, AND BIOPHYSICAL IMAGING
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Therapeutic decisions in lung cancer critically depend on the determination of histologic types and
oncogene mutations. Therefore, tumor samples are subjected to standard histologic and immunohis-
tochemical analyses and examined for relevant mutations using comprehensive molecular diagnostics.
In this study, an alternative diagnostic approach for automatic and label-free detection of mutations in
lung adenocarcinoma tissue using quantum cascade laserebased infrared imaging is presented. For this
purpose, a five-step supervised classification algorithm was developed, which was not only able to
detect tissue types and tumor lesions, but also the tumor type and mutation status of adenocarcinomas.
Tumor detection was verified on a data set of 214 patient samples with a specificity of 97% and a
sensitivity of 95%. Furthermore, histology typing was verified on samples from 203 of the 214 patients
with a specificity of 97% and a sensitivity of 94% for adenocarcinoma. The most frequently occurring
mutations in adenocarcinoma (KRAS, EGFR, and TP53) were differentiated by this technique. Detection
of mutations was verified in 60 patient samples from the data set with a sensitivity and specificity of
95% for each mutation. This demonstrates that quantum cascade laser infrared imaging can be used to
analyze morphologic differences as well as molecular changes. Therefore, this single, one-step mea-
surement provides comprehensive diagnostics of lung cancer histology types and most frequent mu-
tations. (Am J Pathol 2021, 191: 1269e1280; https://doi.org/10.1016/j.ajpath.2021.04.013)
Supported by the German Social Accident Insurance project FP-0259 and
by the Center for Protein Diagnostics.
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Cancer is the most frequent cause of death, second only to
cardiovascular diseases, in industrialized countries. In 2018,
approximately 9.6 million deaths were attributed to cancer.
Worldwide, 2.1 million people are confronted with lung
cancer diagnosis, and 1.76 million die from it every year
(World Health Organization, https://gco.iarc.fr/today/home,
last accessed January 22, 2021). Lung tumors are
characterized by a high degree of heterogeneity and are
divided into numerous types [eg, small-cell lung carci-
noma (SCLC), adenocarcinoma, squamous cell carcinoma,
neuroendocrine carcinoma, carcinoids, and many rare his-
tologies], which are linked to different prognoses and ther-
apeutic approaches.1e3 This complicates the process of
stigative Pathology. Published by Elsevier Inc
diagnosis by the pathologist and may lead to intraobserver
and interobserver variability.4e7 If lung cancer is suspected,
an X-ray and a subsequent computed tomographic exami-
nation of the thorax are performed, followed by tissue
sample collection by bronchoscopy, fine-needle aspiration,
transthoracic needle aspiration, or surgery. In addition to
histologic typing, tumor samples are examined compre-
hensively for oncogene alterations by ultra-deep next-gen-
eration sequencing (NGS). The three most common
. All rights reserved.
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Goertzen et al
mutations in adenocarcinomas of the lung, which are by far
the most common histologic type, are found in the genes
encoding tumor protein 53 (TP53), KRAS proto-oncogene,
GTPase (KRAS), and epidermal growth factor receptor
EGFR). The presence of one of these mutations may in-
fluence both the patient’s prognosis as well as further
therapeutic decisions.8 Tumors with activating mutations in
the EGFR gene often elicit a good response to tyrosine ki-
nase inhibitors, whereas non-EGFR-mutated tumors do not
respond at all to these tyrosine kinase inhibitors.9 Similarly,
patients with KRASG12C mutated tumors respond to G12C-
targeted GTPase inhibitors.10 Furthermore, lung cancers
with TP53 mutations have a poor prognosis, and patients
show limited response to targeted therapies, similar to ALK
(ALK receptor tyrosine kinase) fusion-positive tumors.11 On
the basis of different genomic vulnerabilities, patients with
lung cancer clearly benefit from prior characterization of
mutations.8

In the last two decades, several reports by different
groups have presented Fourier-transform infrared (FTIR)e
based microscopy for tissue diagnostics.12e16 FTIR imaging
was used for the automated and label-free classification of
cancerous tissues from lung,17 colon,18 bladder,19,20 kid-
ney,21 and prostate cancer,22 as well as from melanoma23

patients, with sensitivity and specificity of >90%
compared with diagnostics by pathologists using histologic
staining and immunohistochemical methods. In addition to
the tumor identification in tissue samples, FTIR imaging
may be employed for further analyses, such as glioma
grading24 for distinction of tumors in both colon25 and
bladder20,26 cancer samples, as well as for mutation analysis
in gliomas.27 A workflow to distinguish thoracic and lung
tumors not only by tumor type, but also to classify the
subtypes of diffuse malignant mesothelioma (sarcomatoid
and epithelioid, with 88% accuracy)28 and the five World
Health Organizationedefined lung adenocarcinoma histo-
logic types (acinary, solid, papillary, micropapillary, and
lepidic, with 96% accuracy)29 was presented. The combi-
nation of FTIR imaging and laser capture microdissection
(LCM) with subsequent proteomics adds molecular resolu-
tion to the spatial resolution provided by hyperspectral data
sets. As demonstrated previously, this approach can also be
used for biomarker identification.26,28 These results indicate
that a single index color image can provide the same
biochemical information as several immunohistochemistry
(IHC) stains.

Extending the previous work, new infrared (IR) micro-
scopes with tunable quantum cascade lasers (QCLs) as IR
sources, instead of globar and uncooled microbolometer
detectors, were used to perform FTIR imaging feasible for
routine diagnostic applications. The reduction of the mea-
surement time using QCL-based IR microscopes on breast
cancer tissue microarrays,30 samples of liver fibrosis,31 and
colon tissues,32 as well as the identification of goblet cells in
the colon mucosa, has been reported previously.33 The
differentiation of malignant and nonmalignant structures in
1270
breast tissue has also been reported by this technique.34

Using two Spero-QT IR microscopes (Daylight Solutions,
San Diego, CA), tumor lesions and healthy tissue types on
whole slices were identified with 96% sensitivity and 100%
specificity compared with histopathology.35 A comparison
of the Spero-QT with the previously used Cary-FTIR sys-
tem (Agilent, Santa Clara, CA) showed a reduction of
measurement time at the same wave number (inverse
wavelength, 1/l) resolution by a factor of 160. Therefore,
<30 minutes was required for a whole slice measurement.
This corresponds to the time required for histologic staining
of fresh-frozen tissue and evaluation by a pathologist. A
previous study revealed that QCL-IR imaging can classify
changes at the molecular level in colorectal cancer tissue.
The recognition of microsatellite stability and instability of
cancerous tissue was verified with 100% sensitivity and
93% specificity compared with immunohistochemistry and
fragment length analysis.36

In this study, a label-free, automated, spatially resolved,
and observer-/operator-independent approach using QCL-
based IR imaging is presented. This technique was verified
on thin sections of 536 formalin-fixed, paraffin-embedded
(FFPE) tumor and nontumor lung tissues from 214 patients.
Cancerous regions were identified with a sensitivity of 95%
and a specificity of 97% compared with histopathology.
Furthermore, the tumor type (94% sensitivity and 97%
specificity for adenocarcinoma) and adenocarcinoma muta-
tion status (KRAS, EGFR, or TP53 mutation) were deter-
mined with a sensitivity and specificity of 95% compared
with the NGS gene panel result.

Materials and Methods

Sample Sets

Two different sample sets were used in this study (Table 1).
The first (N Z 21) set was used for training the random
forest (RF) classifiers. It included tumor and normal tissue
samples from patients diagnosed with adenocarcinoma
(n Z 10), squamous cell carcinoma (n Z 5), neuroendo-
crine carcinoma (n Z 1), SCLC (n Z 1), carcinoid (n Z 1),
pulmonary chondroid hamartoma (n Z 1), or other lung
diseases (n Z 2). A KRAS mutation occurred in four ade-
nocarcinomas, and three adenocarcinomas harbored a TP53
mutation and an EGFR mutation. The patients were 50 to 85
years old at specimen collection and had an average age of
68 years. Eleven patients were female, and 10 were male.
The second sample set (N Z 214) was used to verify the RF
classifiers. Among them were tumor and normal tissue
samples from patients diagnosed with adenocarcinoma
(n Z 170), squamous cell carcinoma (n Z 23), neuroen-
docrine carcinoma (n Z 3), SCLC (n Z 3), carcinoid
(n Z 4), pulmonary chondroid hamartoma (n Z 5), or other
lung diseases (n Z 6). KRAS, EGFR, or TP53 mutations
were detected in 20 adenocarcinomas. The remaining tu-
mors with adenocarcinoma (n Z 110) contained other or no
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Sample Sets Included in This Study for Training and Verification

Group

Sex Smoking state Ex-smoker, years

Male Female Unknown Nonsmoker Smoker Unknown >10 5e10 <5

Verification 214 105 101 8 39 100 8 51 8 8
Training 21 10 10 1 6 7 1 4 1 2

Lung Cancer Mutations by IR Imaging
mutations. In the verification samples, patients from 41 to
84 years with an average age of 68 years were included. A
total of 104 patients were female, and 110 were male.

Ethical Statement

The study was approved by the University of Cologne
Ethics Committee (registration number 15-116). General
informed consent for research was obtained from the pa-
tients. All procedures are in accordance with the approved
guidelines and regulations for human experimental research.

Sample Preparation

FFPE lung tissue sections were obtained from the Institute
of Pathology, University Hospital Cologne (Cologne, Ger-
many). The samples were collected during surgery and
prepared following standardized protocols. Fresh-frozen or
FFPE tissue blocks were cut into section (10 mm thin) and
floated onto polyethylene terephtalat membrane frame
slides. The management and distribution of the samples
were performed by the Institute for Prevention and Occu-
pational Medicine of the German Social Accident Insurance
(Ruhr University Bochum, Bochum, Germany). Before the
spectral data acquisition, the FFPE samples were dewaxed
using established protocols.

Data Acquisition

For spectral data acquisition, two Spero QT QCL-based
microscopes and Chemical Vision software version 3.2
(Daylight Solutions) were used. In addition to the original
setup, a purge air diffuser was connected to the sample
chamber. Furthermore, the stage was modified so that two
slides could be analyzed in a row to reduce the equilibrium
time before measurements. The tissue samples were
measured with a 4� objective (0.3 numerical aperture),
which covers a field of view of 2 � 2 mm2 in a spectral
range of 1800 to 948 cm�1 with a spectral resolution of 2
cm�1 in transmission mode. Spero QT operates with an
uncooled microbolometer focal plane array detector with
480 � 480 pixels and a pixel size of 4.25 � 4.25 mm.

Data Processing and Analysis

Spectral artifacts from folds and cracks in the tissue were
eliminated by quality control based on the integral of the
amide I band. Disturbing bands caused by the polyethylene
terephtalat membrane or embedding medium (Tissue-Tek,
The American Journal of Pathology - ajp.amjpathol.org
Sakura Finetek, Staufen, Germany) were removed on the
basis of the relations of the integral of the amide I band and
the integral of the regions between and 1135 to 1064 cm�1

and 1800 to 1700 cm�1. After quality control, Mie scat-
tering was corrected using the resonant Mie scattering-
extended multiplicative signal correction (RMieS-EMSC)
algorithm by Bassan37 (RMie_EMSC_v2) with one itera-
tion. Unsupervised classification was performed using k-
means or hierarchical cluster analysis (HCA). Supervised
and unsupervised classification was performed on un-
smoothed data on the fingerprint region from 1760 to 998
cm�1.
Classifier Setup and Spectral Database Generation

The workflow with the RF classifier used for this work was
established and described in previous publications.29,35,36

The RF classifier was shown to be robust and reliable for
tissue classification using IR imaging.25,38e40 In this study,
five consecutive RF classifiers were generated. Therefore, a
spectral database with tissue-specific spectral information
for pathologic regions, infiltrated inflammatory cells, ne-
crosis, muscle, connective tissue, alveoli, blood, calcifica-
tion, pulmonary chondroid hamartoma, and mucus was set
up. The databases for the other RF levels contained the
spectral signatures for cancerous, necrotic, and inflamma-
tory tissue (second-level RF), adenocarcinoma, squamous
cell carcinoma, small-cell lung cancer, carcinoids, and
neuroendocrine carcinoma (third-level RF), and adenocar-
cinoma with KRAS, EGRF, and TP53 mutations (fourth- and
fifth-level RF). The pathologic findings per sample were
used as ground truth for morphologic detection (first- and
second-level RF) as well as for the tumor type identification
(third-level RF). For mutation analysis (fourth- and fifth-
level RF), the NGS result of the whole tumor per sample
was used as ground truth. The first- and second-level clas-
sifiers were set up with 50 decision trees and 16 spectral
features randomly chosen per decision in the trees. For the
other levels, 500 decision trees and 16 spectral features were
used. The exact class composition and number of spectra of
all five RF classifiers can be seen in Supplemental Tables S1
through S4. Because of the lower signal/noise ratios and
baseline effects, the spectral data range was reduced to 1760
to 998 cm�1, so that 382 wave numbers were used for RF
training. The RF for lung tissue classification was built from
samples of 21 patients. A total of 536 samples from 214
patients for the lung tissue classifier were available for
verification. RF classifiers perform implicit feature selection
1271
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Goertzen et al
using a small subset of variables. The visualization of this
feature selection can be accomplished using the Gini
importance, which can be considered as an indicator for the
relevance of the features in terms of a relative ranking. The
Gini importance thus provides a relative value for the fre-
quency of use of a certain feature for the split at a node
within the decision trees of a model as well as for the overall
discrimination value of a feature. The Gini importance plots
for each of the trained classifiers detailed by individual
training classes are illustrated in Supplemental Figures S1
through S5. All computations were performed using
MATLAB R2019a (MathWorks, Natick, MA). The final
annotation was provided as index color images and
compared with that of the corresponding hematoxylin and
eosin (H&E)estained tissue images. Pathologists at the
Pathology Institute, University Hospital Cologne, supplied
their histologic reports.

IR Imaging-Guided LCM Workflow

The workflow is based on the one previously described by
Großerueschkamp et al.28 The respective lung tissue sam-
ples were measured using a Spero-QT as usual, and the
spectral data were classified during this process. The
resulting index color image was used to determine the re-
gion of interest. For this analysis, only tumor regions that
were incorrectly classified by the fourth or fifth RF classifier
(mutation status) were selected as the region of interest. The
coordinate transfer was performed using a two-dimensional
Helmert transformation based on three reference points.
Because the chemical vision software does not allow
collection of coordinates, Helmert transformation was done
using reference points taken from the respective false color
image. The sample was transferred to an LCM microscope
(PALM MicroBeam; Zeiss, Jena, Germany), and the co-
ordinates of the reference points were taken. The coordinate
transformation was performed in MATLAB. As only tissue
pieces of certain shapes and sizes can be lifted and collected
by the PALM Zeiss instrument, the region of interest was
further subdivided. This resulted in shapes with areas in the
range 100 to 50,000 mm2. The coordinates of these shapes
were imported to the PALM Robo software version 4.6 and
cut using the 5� objective of the instrument. The tissue was
collected in NGS incubation buffer for FFPE tissues and
stored at �80�C until analysis.

NGS Data

Mutational analysis of low-input DNA NGS was performed
using an Ion AmpliSeq Custom DNA Panel (Thermo Fisher
Scientific, Waltham, MA) and the Ion AmpliSeq Library Kit
2.0 (Thermo Fisher Scientific), according to the Ion
AmpliSeq Library Preparation User Guide (Thermo Fisher
Scientific). After multiplex PCR and adapter ligation, li-
braries were generated by target enrichment using the Gene
Read DNA Library I Core Kit, the Gene Read DNA I Amp
1272
Kit (Qiagen, Hilden, Germany), and the NEXTflex DNA
Barcodes (Bio Scientific, Phoenix, AZ). For sequencing, 12
pmol/L of the constructed libraries was processed on the
MiSeq platform (Illumina, San Diego, CA) with a MiSeq
reagent kit V2 (Illumina) with 300 cycles following the
manufacturer’s recommendations. Data analysis and muta-
tion calling were performed as previously described.41,42

The genes that were evaluated for mutations are shown in
Supplemental Table S5.
The QIAseq-targeted DNA panel for human lung cancer

(NGHS-005X-96) with the GeneRead DNAseq Panel PCR
Kit V2 (Qiagen) was used for a subset of samples by pre-
paring libraries using the Gene Read DNA Library I Core
Kit and the Gene Read DNA I Amp Kit (Qiagen), according
to the manufacturer’s protocol. Final library products were
quantified, diluted, and pooled in equal amounts. A total of
1.2 pmol/L of the pooled final libraries was sequenced on a
NextSeq Sequencer (Illumina) with the NextSeq 500 Mid
Output Kit v2 following the manufacturer’s recommenda-
tions. Refer to Supplemental Table S6 for details of the
analyzed regions.

Results

Tumor Identification and Tumor Type Determination in
Lung Tissues

FFPE tumor and nontumor lung tissue sections from 235
patients were used for this study. Within this cohort, 180
patients were diagnosed with adenocarcinoma of the lungs
and 28 patients were diagnosed with squamous cell carci-
noma. The remaining patients had other lung tumors
(SCLC, neuroendocrine carcinoma, carcinoid, and pulmo-
nary chondroid hamartoma), metastasis (eg, from colorectal
carcinoma), or other lung diseases (pneumonia or chronic
obstructive lung disease). The established IR imaging
workflow25,38 used for this study is shown in Figure 1. Data
acquisition was performed with QCL-based infrared mi-
croscopes on unstained, unmodified thin sections of lung
tissues. Each pixel of the image is represented by one IR
spectrum, which shows an integral of the information of the
biochemical composition of the tissue. Therefore, the IR
spectrum serves as a fingerprint for morphologic or mo-
lecular changes in the tissues. Thus, machine-learning al-
gorithms, such as supervised classifiers, can be used to
distinguish between spectra of different tissue types or
molecular conditions. The results are presented as index
color images, where each color represents a different tissue
type or molecular condition. For diagnosis, the pathologist
uses histologic methods, such as H&E and IHC staining, as
well as NGS gene panels. The results of the mentioned
analyses per sample were used as ground truth for the
construction of the spectral database for the classifiers. RF
supervised classifier was used in this study, which provides
reliable and robust results for the annotation of tissue
samples.
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Infrared (IR) imaging process. The spectral data are acquired with a quantum cascade laser (QCL)ebased IR microscope on unmodified lung tissue
samples. Characteristic spectra for each tissue type are extracted and used to train a supervised classifier. The classifier results are presented as index color
images. Pathologic diagnosis by histologic methods [hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining] and a next-generation
sequencing (NGS) gene panel to determine the mutation status.

Lung Cancer Mutations by IR Imaging
To analyze lung tissues, three hierarchical RF classifiers
(Figure 2A) were elucidated using the spectral data of 21
patients. Tumor, chronic obstructive lung disease, pneu-
monia, and nontumor or nondiseased tissue samples of these
patients were included in the training data set. The first RF
Figure 2 A: Schematic representation of random forest (RF) classifier structur
and pathologic tissue. Middle and bottom rows: The second-level RF (middle r
follicles, and the tumor region, which is used in the third-level RF (bottom row
infrared imaging of the thin section of a whole slice lung adenocarcinoma tissu
tifies pathologic regions. C: Subdivision of the pathologic regions using the secon
third RF classifier to determine the tumor type. E: Hematoxylin and eosin (H&E)es
identifiable because of the purple hematoxylin staining. F and G: Enlarged sections
(tumor region) match precisely with tumor lesions of the H&E-stained image. Sca

The American Journal of Pathology - ajp.amjpathol.org
classifier was used to (Figure 2A) differentiate between
different tissue types, such as connective tissue, muscle, and
blood, as well as calcification, necrotic tissue, pulmonary
chondroid hamartoma (cartilage tumors), and pathologic
regions. Subsequently, spectra classified as pathologic were
e and color code. Top row: The first-level RF differentiates between healthy
ow) subdivides the pathologic region into inflammatory infiltrates, lymph
) to determine the tumor type. Right side: Quantum cascade laserebased
e. B: Index color image of the result of the first RF classifier, which iden-
d RF classifier to identify the tumor. D: Analysis of the tumor region by the
tained image of a thin section of adenocarcinoma tissue. The tumor lesion is
of boxed areas in D and E show that the red pixels of the index color image
le bars: 2 mm (BeE); 500 mm (F and G). SCLC, small-cell lung carcinoma.
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Table 3 Results of the Tumor Typing RF Classifier (Third Level)
for FFPE Tissue

Variable ADC SCC CD NEC SCLC H

Sensitivity, % 94 96 100 100 100 100
Specificity, % 97 96 100 100 100 100

ADC, adenocarcinoma; CD, carcinoid; FFPE, formalin fixed, paraffin
embedded; H, pulmonary chondroid hamartoma; NEC, neuroendocrine
carcinoma; RF, random forest; SCC, squamous cell carcinoma; SCLC, small-
cell lung cancer.

Goertzen et al
analyzed by a second RF classifier (Figure 2A), which was
used to identify inflammatory infiltrates, lymph follicles,
slightly necrotic tissue, and tumor regions. A detailed
illustration of the separation of lymph follicles and inflam-
matory infiltrates is shown in Supplementary Figure S6. A
third RF classifier (Figure 2A) used the tumor spectra to
determine the tumor type. This RF classifier identified the
five most common tumor types (adenocarcinoma, squamous
cell carcinoma, SCLC, neuroendocrine carcinoma, and
carcinoid). The results of the tree classifiers are presented in
Figure 2 on a lung tissue section with adenocarcinoma. The
different tissue types as well as the pathologic region
(Figure 2B) were identified more precisely compared with
histopathology (Figure 2E). The same applied to the tumor
region (Figure 2C) determined by the second RF. Figure 2,
D and F (detail of D with matching H&E image, G), illus-
trates that the tumor type (adenocarcinoma) was determined
correctly and homogeneously within the tumor lesions.

For verification, tumor and nontumor samples from 214
patients were available. Of these patients, 208 were diag-
nosed with a lung tumor (Table 2). Because of the large size
of the whole lung tissue, thin sections, and alterations that
occur during the staining process, pixel-based analysis was
not performed. Pixel-based analysis is not relevant for
clinical diagnosis, but can be used for an overall annotation
of the tissue section. Therefore, statistical analyses were
performed using the overall diagnosis of the sections. For
tumor identification, all sections with �5% pathologic-
classified spectra were classified and recognized as tumor
samples. Sections with <5% tumor-classified spectra were
rated as nontumor samples. On considering these parame-
ters, tumor identification achieved a sensitivity of 95% and a
specificity of 97% compared with histopathology. For
verification of tumor type (third RF), tumor samples from
203 patients were accessible. Most of these samples were
diagnosed with lung adenocarcinoma (170 patients), with
approximately 50% clinical incidence being the most com-
mon lung tumor type.43 Twenty-three patients were diag-
nosed with squamous cell carcinoma. Only four patients had
carcinoids, three had neuroendocrine carcinoma, and three
had SCLC. The evaluation of the third classifier was per-
formed using a simple majority vote (Table 3). Therefore,
the tumor type could be determined with a sensitivity of
94% and a specificity of 97% for adenocarcinoma and a
Table 2 Lung Tissue Sample Data Set for Verification and
Training, According to the Tumor Types of the Patients

Group ADC SCC CD NEC SCLC H Other*
P

Training 10 5 1 1 1 1 2 21
Verification 170 23 4 3 3 5 6 214

*Other indicates pneumonia, chronic obstructive lung disease, and
metastasis.
ADC, adenocarcinoma; CD, carcinoid; H, pulmonary chondroid hamar-

toma; NEC, neuroendocrine carcinoma; SCC, squamous cell carcinoma; SCLC,
small-cell lung cancer.
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sensitivity of 96% and a specificity of 96% for squamous
cell carcinoma. For carcinoids, neuroendocrine carcinomas,
and SCLC tissue samples, a sensitivity and specificity of
100% for tumor type identification were achieved. Because
of the low number of samples for verification, the reliability
of these values remains questionable for this cohort and
should be further addressed.

Analysis of Mutations in Lung Adenocarcinoma

In addition to the histochemical and immunohistochemical
staining for subtyping lung cancer, the Institute of Pathol-
ogy, University Hospital Cologne, sequenced an NGS gene
panel to identify relevant mutations in lung tumor tissues.
Previous studies showed that IR imaging can be used for
biomarker identification,26,28,36,44 otherwise performed by
several IHC stainings. Therefore, to add a molecular
dimension to the spatial IR resolution, herein, two additional
RF classifiers were trained to identify mutations in lung
cancer tissues (Figure 3). The most frequent mutations in
lung adenocarcinomas within this data set were mutations in
KRAS, EGFR, and TP53. Therefore, these three mutations
were chosen to build the RF classifier. To train the spectral
data of four patients with KRAS, three with EGFR mutations
and three with TP53 mutations were required. The structure
of this RF is shown in Figure 3. In the first step, the spectra
previously classified as adenocarcinoma on the third level
(tumor type identification) were classified as TP53 or
spectra, which could be either KRAS or EGFR. The fifth RF
subdivides the spectra further as EGFR- or KRAS-classified
spectra. This is necessary because the spectra (Figure 4) of
the tissues with these mutations are similar to each other,
indicating that both mutated genes activate mitogen-
activated protein kinase signaling. The most noticeable
differences between the spectral data of lung tissues with
these mutations occur within the fingerprint region between
1350 and 1000 cm�1. This is probably based on the fact that
the EGFR mutation causes a constant activation of this re-
ceptor, which also triggers the KRAS signaling cascade. For
more detailed spectral information on the training data set,
see Supplemental Figures S7 through S12.
The results of these two RF classifiers to determine the

mutation status of lung adenocarcinoma are presented in
Figure 5. The index color images of sections of tissue
samples with TP53 (Figure 5A), KRAS (Figure 5C), and
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Schematic representation of the structure and color code of
the third to fifth level of the random forest (RF) classifier for mutation
analysis of adenocarcinomas. Top panel: The third RF identifies the tumor
type of the regions previously classified as tumor. Middle and bottom
panels: Subsequently, the mutation status of the adenocarcinomas is
determined on a fourth (TP53 or EGFR/KRAS ) and fifth level (KRAS or EGFR).
SCLC, small-cell lung carcinoma.

Lung Cancer Mutations by IR Imaging
EGFR (Figure 5E) mutation are shown in comparison to
their corresponding H&E staining (Figure 5, B, D, and F;
refer to Supplemental Figure S13 for whole tissue slices).
The identified tumor regions and the tumor lesions visible
based on H&E staining matched well. Furthermore, the
three mutations were determined correctly as well as ho-
mogeneously within the tumor lesions.

For verification, samples of 60 patients with lung
adenocarcinoma (20 tumor samples with KRAS, EGFR, and
The American Journal of Pathology - ajp.amjpathol.org
TP53 mutations each) were used. The evaluation of the
fourth and fifth RF classifiers was performed using a simple
majority vote. Slices with >50% of the previously classified
tumor spectra assigned to one mutation class were rated as
positive for this mutation. The threshold was confirmed
using receiver operating characteristic curves (Supplemental
Figure S14) for both classifiers. The mutation status was
determined with sensitivities and specificities of 95% for
each mutation compared with the NGS gene panel.

Clarification of Mutation Classifier Results via IR-
Guided LCM

In total, 87% (52 of 60) of the verification data set for the
mutation status classifier was identified, with >65% of the
tumor spectra assigned to the correct mutation class
(Supplemental Table S7). The tumors of three patients (one
with KRAS, EGFR, and TP53 mutations) were identified
correctly, but the respective mutations were misclassified.
The cases with EGFR and KRAS mutations were assigned to
other mutations. The incorrect TP53 case was classified as
KRAS or EGFR (fourth RF). Five cases were correctly
classified (50% to 65% spectra assigned to the correct mu-
tation) but showed heterogeneity with large contributions of
other mutations. After a renewed control of the NGS gene
panel results, one of these cases (63.71% as KRAS and
36.29% as TP53 mutated classified tumor spectra) showed
not only a KRAS mutation (as formerly assumed), but also a
co-occurring mutation within the TP53 gene. The index
color image as a result of the fourth RF classifier is shown in
Figure 6A in comparison with the corresponding H&E
staining of the thin section of lung tissues (Figure 6B). Both
mutation classes (KRAS and TP53) were distributed rela-
tively homogeneously within the tumor lesions. This may
indicate that the mutations were not locally confined as
heterogeneous mutations, but rather co-occurred
homogeneously throughout the tumor tissue.

Three of the remaining five noticeable cases still had
sufficient lung tissue to repeat the genetic analysis. In this
regard, the combined IR imaging LCM workflow presented
by Großerueschkamp et al28 was used to collect homoge-
neous tissue samples without prior labeling of the tissue
slices. Only areas that were assigned to the incorrect mu-
tation classes were collected. The subsequent performance
of the NGS gene panel showed that all previously detected
mutations could be confirmed. This led to the conclusion
that the incorrectly classified spectra in the three examined
patient samples are a false detection of the classifier or may
result from further undetected mutations that co-activate
both mitogen-activated protein kinase and TP53 signaling.
Discussion

This study used a label-free and operator-independent
approach to identify tumor regions and to determine the
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Figure 4 Mean value infrared spectra (1350 to 1000 cm�1) of the classes used to set up the fourth and fifth random forest classifiers to detect mutation
status (KRAS, purple; TP53, gray; EGFR, red).

Goertzen et al
tumor type as well as the mutation status of lung tumor and
nontumor tissue samples with high sensitivity and speci-
ficity. A QCL-based IR imaging workflow for whole-slice
Figure 5 Quantum cascade laserebased infrared imaging of lung tissues to de
fifth random forest classifier on sections of lung adenocarcinoma tissues with TP5
and eosin (H&E) staining (B, D, and F) of the sections for comparison. Scale bar
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lung tissue sections, and a decrease in the measuring time by
160 times in comparison to the previously used Agilent
Cary-FTIR system (Supplemental Figure S15) were used.
termine the mutation status of adenocarcinomas. Results of the fourth and
3 (A), KRAS (C), and EGFR mutation (E) and the corresponding hematoxylin
s: 250 mm (AeD); 500 mm (E and F).
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Lung Cancer Mutations by IR Imaging
The classification of a large tissue sample could be per-
formed in <30 minutes, which is within the same time range
required for histopathology. Compared with previous
studies,30,32,34,44 a high number of whole slice samples (578
FFPE tissue samples from 235 patients) could be analyzed
because of the high sample throughput. In addition, the
compact design of the uncooled microbolometer detector of
the Spero-QT can make its routine use in clinical settings
feasible. Furthermore, the data processing time could be
reduced by performing data correction and classification
parallel to data acquisition for each field of view individu-
ally (480 � 480 pixels at 427 data points). Therefore,
computing can be performed on ordinary personal com-
puters, and no additional and expensive high-performance
hardware would be needed.

Another important prerequisite for the clinical translation
of QCL-based IR imaging is the validation of the classifiers
on an independent data set. This not only includes the use of
several instruments at different locations but also different
operators and samples from different clinics. This ensures
that the algorithm is not fitted to artifacts caused, for
instance, by a certain preparation method. In the present
study, two Spero-QT instruments were used, and data
acquisition was performed by seven different operators. In
addition, the measurements were performed at two different
locations. The results of the presented RF classification and
the determination of tumor type and mutation status of lung
tissues are independent of the device, of the operator who
performs the measurement, and of the device location. To
increase the reliability of these results, a larger number of
tissue samples from different clinics would be required.
Furthermore, the RF classifier could be replaced by deep
learning algorithms. This would add spatial information to
the existing spectral information so that morphologic as-
pects of the tissue could also be included in the classification
process. As reported by Schuhmacher et al45 in regard to
analyzing colon cancer samples using a neural network, this
Figure 6 Quantum cascade laserebased infrared imaging of lung tissue to d
forest (RF) on sections of lung adenocarcinoma tissue with KRAS and TP53 mutatio
for comparison (B). This section was assumed to contain the KRAS mutation. The R
as TP53 mutated. Scale bar Z 1 mm (A and B).
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is a promising approach for the annotation of tissue samples
based on IR spectral data. A further application of deep
learning, as demonstrated by several groups, is the evalua-
tion of H&E images. Recently, Kather et al46 reported the
identification of microsatellite stability or instability in
colorectal cancer samples based on H&E images using deep
residual learning. Weakly supervised multiple instance
learningebased deep learning on whole slide images was
performed by Lu et al47 on H&E images of renal cell car-
cinoma as well as nonesmall-cell lung cancer and by
Campanella et al48 on basal cell carcinoma and prostate and
breast cancer. Therefore, evaluating these modern weakly
supervised classifiers on infrared hyperspectral data sets in
advanced studies may be a promising approach.

To further reduce the measuring time, the number of
recorded wave numbers can be reduced, or only discrete
frequencies can be measured.49 The latter, however, can be
problematic with regard to the RMie-EMSC correction, as
this requires the complete spectrum.

This study showed for the first time that QCL-based IR
imaging can be used not only to identify different tissue
types and tumor regions with a sensitivity of 95% and a
specificity of 97% compared with histopathology, but also
to identify spectral markers that allow differentiation of
different molecular states. This illustrates that a single IR
measurement can be used to obtain information about a
sample that would otherwise require several methods and
time-consuming procedures (IHC or NGS). Mayerich et al50

presented the possibility of mimicking several IHC stains on
breast tissue using FTIR imaging. The RF classifier for the
determination of mutation status introduced in this study
could be verified with a sensitivity and specificity of 95%
for adenocarcinoma tissue samples from 60 patients. Only
one patient per mutation type (KRAS, EGFR, or TP53) was
found to be incorrectly detected compared with the results
of the NGS gene panel. In one case where there was het-
erogeneity in the recognition of the classifier (Figure 6), the
etermine the mutation status of adenocarcinomas. Results of the random
n (A) and the corresponding hematoxylin and eosin staining of the section
F result classified 63.71% of the tumor spectra as KRAS mutated and 36.29%
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presence of both KRAS and TP53 mutations was confirmed
using the gene panel. A different approach for the automated
determination of lung tumor types and mutations was shown
by Coudray et al,51 who used a deep learning algorithm on
H&E-stained images of a comparable number of patients.
Kather et al52 performed a pan-cancer analysis based on
H&E staining using a deep learning algorithm. In contrast to
the method presented in this study, these approaches only
provide probabilities for each image tile, not a spatially
resolved assignment. Furthermore, it is not possible to
identify different tissue types or spatially resolve tumor re-
gions or mutation patterns.

In addition, the method introduced with this study facil-
itates the use of an LCM to isolate precisely defined tissue
types from untreated and unstained samples. The regions of
individual tissue types can be isolated precisely, the material
contains little unwanted (contaminating) tissue, and the
amount of material required for further analyses can be
reduced significantly. Furthermore, this approach can also
be used to examine samples that have been obtained by
minimally invasive methods and provide only a small
amount of material, such as endobronchial ultrasound-
guided transbronchial needle aspiration. These samples can
be used not only for genome analyses, as shown in this
study, but also for proteomic and transcriptomic studies.
Cumulative data on a single sample can contribute to a
better understanding of the molecular changes occurring in
different lung cancer types and thus improve diagnostic and
therapeutic approaches to the disease.

Treatment procedures on FFPE tissues lead to changes
within the tissue, and thus, influence the spectral data
compared with spectra from fresh-frozen tissue. These dif-
ferences can be seen in bands, which are caused or influ-
enced by lipids. Therefore, two different classifiers must be
trained for FFPE and fresh-frozen tissue. The first three RF
levels were built similar to the FFPE tissue classifier.
Because of the low number of patients with certain muta-
tions, no classifier could be trained to determine the muta-
tion status. This can be addressed in the future by obtaining
more fresh-frozen patient samples.

In summary, this study presents a new application for
QCL-based IR imaging by showing that both morphologic
and molecular alterations can be detected reproducibly by
this automatic and label-free method. To increase the reli-
ability of IR imaging, the next step is to conduct studies
with larger patient numbers adapted to clinical needs, which
will augment acceptability of this method in the medical
community.
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Supplementary Table 1. Number of classes and spectra per class used to build up the 1st level RF for 

tissue type identification. 

  classes  Patho

‐logic 

connective 

tissue 

calcifi‐

cation 

blood  necrosis  muscle  H  spectra 

total 

1st level RF  7  3808  1030  468  767  1009  3356  501  10939 

 



Supplementary Table 2. Number of classes and spectra per class used to build up the RF classifier for 

tumor identification (2nd level). 

  classes  tumor  necrosis  inflammation  lymph follicles  spectra total 

2nd level RF  4  4822  3048  10542  3034  21446 

 



Supplementary Table 3. Number of classes and spectra per class used to build up the RF classifier for 

tumor typing (3rd level). 

  classes  ADC  SCC  SCLC  CD  NEC  spectra total 

3rd level RF  5  7332  8220  4366  4657  4492  29067 

 



Supplementary Table 4. Number of classes and spectra per class used to build up the RF classifier for 

mutation status analysis (4th and 5th level). 

  classes  TP53  KRAS/EGFR  spectra total 

4th level RF  2  5375  5715  11090 

  classes  EGFR  KRAS  spectra total 

5th level RF  2  6104  7135  13239 

 



Supplementary Table 5. Mutations were determined by sequencing using a MiSeq reagent kit V2 

(Illumina, San Diego, CA, USA). Accesion numbers see www.ncbi.nlm.nih.gov/nuccore 

Gene  NM_Number  Exon 

AKT1  NM_001014431  4 

ALK  NM_004304  21 ‐ 25 

BRAF  NM_004333  11, 15 

CTNNB1  NM_001904  3 

DDR2  NM_006182  3 ‐ 18 

EGFR  NM_005228  18, 19, 21 

EGFR  NM_005228  20 

ERBB2  NM_004448  19, 20 

KRAS  NM_033360  2, 3 

MAP2K1  NM_002755  2 

MET  NM_001127500  14 

NRAS  NM_002524  2, 3 

PIK3CA  NM_006218  10, 21 

PTEN  NM_000314  1 ‐ 8 

TP53  NM_000546  5 ‐ 8 

 



Supplementary Table 6. Regions analyzed with the NextSeq 500 Mid Output Kit v2 (Illumina, San 

Diego, CA, USA). Accesion numbers see www.ncbi.nlm.nih.gov/nuccore 

Gene  NM_Number  Exon 

ALK  NM_004304  22 ‐ 25 

BRAF  NM_004333  11, 15 

CTNNB1  NM_001904  3 

EGFR  NM_005228  18 ‐ 21 

ERBB2  NM_004448  8, 19, 20 

FGFR1  NM_023110  4 ‐ 7, 10, 12 ‐ 15 

FGFR2  NM_000141  6 ‐ 15, 18 

FGFR2  NM_022970  8 

FGFR3  NM_000142  3, 7, 9, 10 (Codon 429 ‐ 471), 12 (Codon 512‐529), 14, 16, 18 

(Codon 769 ‐ 807) 

FGFR4  NM_213647  3, 6, 9, 12, 13 (Codon 556‐607), 15, 16 

IDH1  NM_005896  4 

IDH2  NM_002168  4 

KRAS  NM_033360  2 ‐ 4 

MAP2K1  NM_002755  2, 3 

MET  NM_001127500  14, 16 ‐ 19 

NRAS  NM_002524  2 ‐ 4 

PIK3CA  NM_006218  10, 21 

PTEN  NM_000314  1 ‐ 8 

ROS1  NM_002944  34 ‐ 41 

TP53  NM_000546  4 (Codon 97 ‐ 125), 5, 6, 7, 8  

 



Supplementary Table 7 Verification of the mutation status analysis. Results of NGS gene panel and RF 

classifiers. Three patient samples were classified incorrectly (see bold entries).  

Patient No.  Gene panel 

4th RF 

TP53 [%]

4th RF  

KRAS/EGFR [%]

5th RF 

KRAS [%]

5th RF 

EGFR [%]  RF result 

V01  KRAS  37.62  62.38  51.42  48.59  KRAS 

V02  KRAS  38.78  61.22  80.31  19.68  KRAS 

V03  KRAS  25.63  74.37  57.65  42.35  KRAS 

V04  KRAS and TP53  36.29  63.71  50.43  49.56  KRAS 

V05  KRAS  23.6  76.4  60.07  39.92  KRAS 

V06  KRAS  26.47  73.53  54.87  45.11  KRAS 

V07  KRAS  32.27  67.73  61.27  38.75  KRAS 

V08  KRAS  32.29  67.71  70.65  29.34  KRAS 

V09  KRAS  35.26  64.74  70.29  29.72  KRAS 

V10  KRAS  29.88  70.12  49.41  50.59  EGFR 

V11  KRAS  23.15  76.85  51.77  48.23  KRAS 

V12  KRAS  33.97  66.03  74.97  25.02  KRAS 

V13  KRAS  25.3  74.7  70.54  29.46  KRAS 

V14  KRAS  14.61  85.39  51.93  48.06  KRAS 

V15  KRAS  25.97  74.03  77.12  22.86  KRAS 

V16  KRAS  33.22  66.78  82.64  17.35  KRAS 

V17  KRAS  26.51  73.49  62.62  37.39  KRAS 

V18  KRAS  24.1  75.9  58.79  41.2  KRAS 

V19  KRAS  29.14  70.86  55.07  44.92  KRAS 

V20  KRAS  26.53  73.47  62.59  37.4  KRAS 

V21  EGFR  33.37  66.63  69.3  30.69  KRAS 



Patient No.  Gene panel 

4th RF 

TP53 [%]

4th RF  

KRAS/EGFR [%]

5th RF 

KRAS [%]

5th RF 

EGFR [%]  RF result 

V22  EGFR  25.58  74.42  35.49  64.52  EGFR 

V23  EGFR  13.43  86.57  17.31  82.71  EGFR 

V24  EGFR  24.61  75.39  37.47  62.51  EGFR 

V25  EGFR  28.48  71.52  35.92  64.08  EGFR 

V26  EGFR  23.44  76.56  47.68  52.32  EGFR 

V27  EGFR  27.14  72.86  47.34  52.65  EGFR 

V28  EGFR  26.75  73.25  32.21  67.8  EGFR 

V29  EGFR  29.24  70.76  33.43  66.56  EGFR 

V30  EGFR  31.88  68.12  39.75  60.23  EGFR 

V31  EGFR  26.73  73.27  23.18  76.82  EGFR 

V32  EGFR  20.92  79.08  42.72  57.28  EGFR 

V33  EGFR  26.5  73.5  47.33  52.67  EGFR 

V34  EGFR  31.92  68.08  39.92  60.07  EGFR 

V35  EGFR  22.5  77.5  36.04  63.96  EGFR 

V36  EGFR  26.94  73.06  35.36  64.65  EGFR 

V37  EGFR  16.35  83.65  26.66  73.34  EGFR 

V38  EGFR  40.63  59.37  46.88  53.12  EGFR 

V39  EGFR  30.93  69.07  19.28  80.72  EGFR 

V40  EGFR  29.07  70.93  30.73  69.28  EGFR 

V41  TP53  74.76  25.24      TP53 

V42  TP53  80.12  19.88      TP53 

V43  TP53  80.80  19.20      TP53 

V44  TP53  60.50  39.50      TP53 



Patient No.  Gene panel 

4th RF 

TP53 [%]

4th RF  

KRAS/EGFR [%]

5th RF 

KRAS [%]

5th RF 

EGFR [%]  RF result 

V45  TP53  73.98  26.02      TP53 

V46  TP53  58.17  41.83      TP53 

V47  TP53  94.16  5.84      TP53 

V48  TP53  67.61  32.39      TP53 

V49  TP53  75.48  24.52      TP53 

V50  TP53  74.83  25.17      TP53 

V51  TP53  36.47  63.53      EGFR/KRAS

V52  TP53  65.77  34.23      TP53 

V53  TP53  70.28  29.72      TP53 

V54  TP53  69.77  30.23      TP53 

V55  TP53  54.59  45.41      TP53 

V56  TP53  74.63  25.37      TP53 

V57  TP53  57.77  42.23      TP53 

V58  TP53  67.78  32.22      TP53 

V59  TP53  64.20  35.80      TP53 

V60  TP53  71.27  28.73      TP53 
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