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Abstract
Background: Digital pathology, in its primary meaning, de-
scribes the utilization of computer screens to view scanned 
histology slides. Digitized tissue sections can be easily 
shared for a second opinion. In addition, it allows tissue im-
age analysis using specialized software to identify and mea-
sure events previously observed by a human observer. 
These tissue-based readouts were highly reproducible and 
precise. Digital pathology has developed over the years 
through new technologies. Currently, the most discussed 
development is the application of artificial intelligence to 
automatically analyze tissue images. However, even new 
label-free imaging technologies are being developed to al-
low imaging of tissues by means of their molecular compo-
sition. Summary: This review provides a summary of the 
current state-of-the-art and future digital pathologies. De-
velopments in the last few years have been presented and 
discussed. In particular, the review provides an outlook on 
interesting new technologies (e.g., infrared imaging), which 
would allow for deeper understanding and analysis of tissue 
thin sections beyond conventional histopathology. Key 
Messages: In digital pathology, mathematical methods are 
used to analyze images and draw conclusions about diseas-

es and their progression. New innovative methods and 
techniques (e.g., label-free infrared imaging) will bring sig-
nificant changes in the field in the coming years.

© 2021 S. Karger AG, Basel

Introduction

Digital pathology, in its primary meaning, describes 
the utilization of computer screens to view scanned his-
tology slides. Digitized glass slide tissue sections can eas-
ily be shared for a second opinion, which is even more 
important under the current restrictions of the COV-
ID-19 pandemic. In addition, it allows tissue image anal-
ysis using specialized software tools to identify and mea-
sure events previously reported by a human observer. 
These tissue-based readouts were highly reproducible 
and precise. The term digital pathology has widened over 
the years using new technologies. Currently, the most dis-
cussed development is the application of artificial intel-
ligence (AI) to automatically analyze tissue images. In ad-
dition, even new imaging technologies are being devel-
oped to allow label-free imaging of tissues by means of 
their molecular composition. All these methods are in-
tended to support conventional histopathology to reduce 
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workload and to provide more in-depth information for 
pathological reporting. In this short review, important 
developments in the last few years will be discussed, in 
addition to new techniques in digital pathology.

Digital Pathology and Image Analysis

In principle, digital pathology began with the advent 
of digital cameras and computers on microscopes in the 
1980s and 1990s. However, it was not until the commer-
cial availability of digital slide scanners allowing whole-
slide imaging at the turn of the millennium that the basis 
for modern digital pathology was established. Today, dig-
ital slide scanners are available for most pathologies, al-
lowing the fast and reliable digitalization of traditional 
glass histology slides. These images can then be viewed as 
decentralized on a computer screen or using a handheld 
device at a resolution similar to that of brightfield or fluo-
rescence microscopy. This procedure places other de-
mands on the workflow used, so the technical require-
ments (e.g., slide scanner, image storage, and image serv-
er), trained staff, and quality control (e.g., in the case of 
automated scans, control of the consistent color repre-
sentation, and sharpness) must be ensured [1]. In par-
ticular, in light of the current restrictions due to the CO-
VID-19 pandemic, the advantage of digitalization is obvi-
ous: cases can be discussed with colleagues in the simplest 
way without personal contact [2]. Furthermore, the im-
ages can be linked to digital patient records for archiving 
and digital evaluation using specialized software with 
high reproducibility [3]. In 2017, Philips received Food 
and Drug Administration (FDA) approval for a digital 
pathology whole-slide scanning solution (IntelliSite). 
This was the first global approval of a digital pathology 
system solution. One year later, the FDA permitted the 
first medical device using AI to detect diabetic retinopa-
thy in adults (IDx-DR). The entry of these modern tech-
nologies into everyday pathology will accelerate in the 
coming years. All these and the methods presented below 
are intended to relieve and support the pathologist in his 
daily work.

Today, besides the digital review of whole-slide imag-
es, the most commonly used measures extracted from 
digitized tissue images are area-based and cell-based and 
employ object detection. A good introduction and sum-
mary of these methods was provided in 2019 in a white 
paper from the Digital Pathology Association [4]. Thus, a 
few methods of image segmentation for the identification 
of cells in histological images are discussed. Many of these 
algorithms are based on fixed or adaptive thresholds, wa-
tershed segmentations, active contour models, or tem-
plate matching with shape priors. There are many other 
methods for image analysis, but a description of all of 

them is beyond the scope of this review, so we will limit 
ourselves to single examples of today’s used approaches 
to illustrate current developments in digital pathology. 
One of the most common uses of segmentation is in the 
field of immunohistochemistry (IHC). For example, with 
the specific staining of individual proteins, segmentation 
in IHC helps to count cell nuclei or the ratio between 2 
stained protein biomarkers. A frequently used example is 
the membrane protein human epidermal growth factor 
receptor 2, which can guide treatment strategies and 
prognosis in breast cancer [5, 6]. For scoring, the intensi-
ties and circumferential patterns of staining were used. 
The human epidermal growth factor receptor 2 has also 
been implicated in colorectal cancer (CRC) [7, 8].

Digital Pathology and Artificial Intelligence

With ever-improving slide scanners, wealth of data 
generated, and ever-increasing computational power, 
digital pathology is also becoming increasingly explored 
with the use of AI. AI is an umbrella term that covers all 
computer algorithms exhibiting behavior similar to hu-
man intelligence. This can be a simple training of decision 
trees, for example, to automatically recognize light and 
dark areas in tissue. However, it can also end up in com-
plex networks that try to emulate human neural pathways 
and thus learn facts (deep neural networks). All these ma-
chine learning methods require training on known and 
representative data, for example, to recognize a particular 
tissue type. Here, close monitoring by experienced pa-
thologists is very important to avoid training on wrong 
features or overtraining. The latter happens when a clas-
sifier learns only by heart and knows the training dataset 
perfectly but fails on majority of other independent sam-
ples. In the following section, further interesting aspects 
of computational pathology in combination with ma-
chine learning, especially convolutional neural networks 
(CNN), are discussed. In recent years, the databases for 
histological images have been continuously growing, thus 
allowing for the training of even more complex machine 
learning algorithms for several issues. Deep neural net-
works for image analysis, which are already being used for 
various applications in daily life, such as recognition of 
traffic signs in cars, have great potential. In pathology, 
these neural networks can help to make a pre-selection or 
to learn correlations that are not obvious even to a trained 
observer, such as a response to therapies [9, 10].

An application is the analysis of the immune context 
of CRC. This technique was established and designated as 
the “Immunoscore” [11–13]. The basis of this method is 
the quantification of lymphocyte populations, in particu-
lar CD3- and CD8-positive T cells, both at the tumor cen-
ter (CT) and at the invasive margin (IM). A scoring sys-
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tem was used, ranging from low immune cell densities 
found at both the CT and the IM (Immunoscore 0–I0) to 
high densities classified as Immunoscore 4 (I4), with in-
creasing scores correlating with longer patient survival 
[14, 15]. In brief, CD3- and CD8-immunostained tissue 
thin sections were scanned, and the 2 corresponding dig-
ital images were validated by the operator. The images 
were then analyzed using a dedicated software (Immu-
noscore Analyzer; HalioDx). In the first step, the software 
automatically detects the tissue histologic structure using 
a trained CNN. Second, an operator defines the tumor 

(adenocarcinoma), healthy tissue (submucosa, muscula-
ris propria, and serosa), and epithelium (mucosa). In this 
step, all areas of necrosis, abscesses, and artifacts (bub-
bles, folds, torn areas, and background) were marked for 
exclusion to avoid false positives. Thereafter, the software 
calculates the Immunoscore by counting the IHC-stained 
cells based on a proprietary computer vision algorithm. 
The entire procedure, including all materials, instrumen-
tation, and software, has been validated and approved for 
use in clinical practice [14, 15]. Even with this already 
highly developed and validated method, its usability in a 

Fig. 1. A CNN classifier was used to classify real-world images 
from the DACHS cohort. A, B Two representative example images. 
Left: original HE image; right: classification map. Even fine struc-
tures are recognized by the neural network even in regions of sub-
optimal tissue quality. Only the tissue is shown in this example, 
and because the tissue does not occupy a rectangular area on the 
pathology slide, the whole-slide image was manually segmented by 
an observer trained in pathology to show only the tissue without 

background for better clarity (background is white). This figure 
was previously published in a study by Kather et al. [28] published 
in PLoS Medicine. ADI, adipose tissue; BACK, background; CNN, 
convolutional neural network; DACHS, Darmkrebs: Chancen der 
Verhütung durch Screening; DEB, debris; HE, hematoxylin-eosin; 
LYM, lymphocyte aggregates; MUC, mucus; MUS, muscle; 
NORM, normal mucosa; STR, stroma; TUM, tumor epithelium.
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routine manner must still be evaluated. This includes 
points such as feasibility, simplicity, cost, robustness, and 
reproducibility. While cost and reproducibility are self-
explanatory, the feasibility and simplicity of the method-
ology include whether it is feasible in any pathology work 
setting without much effort. For example, independence 
from errors caused by misalignment of the microscope 
used and incorrect operation of the software must be en-
sured. This is also linked to the robustness of the meth-
odology, which describes the reliability in the face of such 
influences. The Immunoscore has the potential to fulfill 
these key aspects, but it is still a way to prove all these 
points in clinical studies. Thus, studies on whether the 
results are reproducible in everyday clinical practice and 
at independent clinical centers should be continuously 
done [15]. This example, which is already very close to 
application, shows that the interaction between the user 
and automated evaluation is necessary to ensure success-
ful diagnostics. After all, a classifier cannot recognize any-
thing that it has not previously learned. Unfortunately, in 
contrast to humans, classifiers usually do not ask ques-
tions but simply make a decision. Therefore, a pathologist 
is indispensable for making the final decision.

An increasing number of morphologically driven 
CNN-based models have been successfully used for tu-
mor detection, classification, gland segmentation, and 
grading, especially for bladder [16, 17], brain [18], breast 
[19], gastric [20], lung [21], and prostate [22, 23] cancers. 
To date, some of the largest studies using CNNs have 
been conducted for CRC. Several approaches have been 
published in the pathologic image analysis of CRC. How-
ever, until today, the studies have many limitations, such 
as the use of annotated data with limitations, a relatively 
small number of training and validation datasets for gen-
eralization, and impaired study design for an appropriate 
level of evidence. A recent review has discussed several 
recent studies [24]. Therefore, only a few of the latest 
studies are presented here. Significant work in the last 2 
years has been done by a German group who has present-
ed various deep learning models that detect/predict CRC 
tumors, microsatellite instability (MSI), mutation pat-
terns, and survival [25–28]. The CNN segmentation is 
shown in Figure 1. In their most recent studies, they fur-
ther tested their models for MSI detection [26] and pre-
sented pan-tumor mutation detection [27]. Both were de-
tected in tumor samples on routine histological slides 
(H&E stained). For MSI, 8,836 colorectal tumors (of all 
stages) included in the MSI-DETECT consortium study 
were analyzed. The CNN was trained to identify samples 
with MSI. Performance was assessed by cross-validation 
(N = 6,406 specimens) in an external cohort (n = 771 
specimens), resulting in an AUROC curve of 0.92 (lower 
bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 
(range, 0.59–0.65), or 67% specificity and 95% sensitivity, 

in the cross-validation development cohort. In the valida-
tion cohort, an AUROC of 0.95 (range, 0.92–0.96) with-
out image preprocessing and an AUROC of 0.96 (range, 
0.93–0.98) after color normalization were reached. As an 
independent validation dataset, the authors showed the 
performance of their MSI detector on endoscopic biop-
sies, which are quite different samples than the resectates 
used for training, and achieved a much lower AUROC of 
0.78. This shows that the dataset with thousands of sam-
ples does not precisely cover the special features or tech-
nical artifacts of very small samples well, and that the neu-
ral network could not learn to recognize them perfectly 
on the used training dataset [26]. Barriers in AI develop-
ment are technical artifacts including fragmented tissue, 
small tissue areas, and cauterization, as well as biological 
artifacts (sampled from the luminal portions of the tumor 
only) [24]. As the authors of the presented study state, the 
clinical application of this technology requires high per-
formance and multisite validation, which have not yet 
been performed. All these aspects have not yet been ad-
dressed and significantly limit all of these systems, as they 
will always rely on human assistance.

Digital Pathology, Artificial Intelligence, and Label-
Free Imaging

Most approaches discussed in digital pathology relate 
to the analysis of stained tissue sections, as in the previous 
examples. This results in several difficulties; for example, 
it has high requirements for consistent staining quality. 
In addition, many different stains with an increasing 
number of biomarkers to be analyzed per patient sample 
are needed in order to achieve a fully comprehensive 
analysis of the tissue. AI now opens up a new field where 
staining of thin tissue sections is no longer necessary, 
wherein the physical properties of molecules are used to 
extract spatially resolved specific information about the 
tissue. To do so, label-free vibrational spectroscopic 
methods (infrared [IR] and Raman spectroscopy) are 
used to analyze thin tissue sections. Here, we will focus on 
IR imaging for automated classification of cancer tissues 
[29]. In combination with AI, IR imaging allows morpho-
logical and molecular analyses of a single tissue thin sec-
tion within only a few minutes. This involves examining 
the thin tissue sections in an IR microscope, which is very 
similar to a brightfield microscope, except that the speci-
men is irradiated with infrared rather than visible light. 
The IR interacts with the molecules in the sample and in-
cites molecular vibrations [30]. This results in a specific 
intensity being lost as it passes through the sample, called 
absorption. Infrared cameras can thus be used to record 
the spatially resolved IR spectra. For individual mole-
cules, specific information about the molecule can be ob-
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tained from the IR spectra measured in this manner. For 
complex systems such as tissues, the spatially resolved IR 
spectra represent an integral “fingerprint” of the entire 
proteome, genome, transcriptome, lipidome, and metab-
olome. This fingerprint can then be used by AI to analyze 
tissues, similar to the methods presented previously. In 
contrast to staining-based methods, the IR fingerprints of 
a single section can be used to consider not only morphol-
ogy but also molecular composition. Furthermore, the 
tissue remains unmodified, undamaged, and can there-
fore be used for further analysis (e.g., omics).

The IR imaging technique, which is still very new in 
pathology, has been developed and tested in basic re-
search over the last few decades. Two to 3 years ago, the 
most commonly used form was Fourier-transform infra-
red (FTIR) imaging. This has been applied by a number 
of research groups worldwide to first identify spectral dif-
ferences between different (normal) tissue types, between 
normal and diseased tissues [31–35], between tissues with 
different disease types [36], and as a method to elucidate 
prognostic information [37, 38]. Currently, IR imaging 
has been applied for the automated, label-free classifica-
tion of tumorous tissue [39], including colorectal [40, 41], 
lung [42, 43], prostate [44], bladder [45, 46], and skin [47] 
cancer and many more. These studies demonstrated sen-
sitivities and specificities of the technique >90%, as com-
pared to histopathology and IHC as the ground truth.

For CRC, different tissue structures that occur in the 
colon wall were found to have distinctly different spectro-
chemical signatures. The structures identified spectrally, 
namely, the lamina propria mucosae, the lamina muscu-
laris mucosae, the crypts, and the lumen filled with mucus, 
connective tissue, and cancer were classified by an AI al-
gorithm called random forest. The classifier was trained 
on a spectral dataset representing different tissue types. 
The classification of CRC using FTIR imaging has high 
accuracy, sensitivity, and specificity (96% accuracy, 94% 
sensitivity, and 100% specificity) [41]. Later, this approach 
was extended by differential cancer diagnosis, including 
grading [48]. All these studies demonstrated that FTIR 
imaging has the power to classify tissue morphology with-
out staining based on spectral fingerprints. The results are 
highly comparable to the annotation by a trained expert, 
but staining and observer independence are done in an 
automated manner. Now, one may ask why this innova-
tive method has not yet found its way into clinical practice, 
to which one can attribute to the slow speed and high sen-
sitivity to laboratory conditions of FTIR imaging (e.g., 
temperature changes and the need for liquid nitrogen). 
For slowness, a CRC sample of, for example, 1 × 3 cm in 
size can take several days for analysis. Therefore, its use in 
clinical everyday business is not yet feasible.

In recent years, new IR imaging systems have been de-
veloped. These are no longer using FTIR spectrometers. 

Instead, quantum cascade lasers (QCLs) are used as high-
power light sources. The groups of Bhargava and Petrich 
made novel discoveries in the field of chemical imaging 
with homemade QCL-based microscopes [49–51]. This 

Fig. 2. Colorectal cancer tissue analysis using H&E staining as the 
gold standard (A), the Spero QT system (B), and an FTIR-based im-
aging system (C). The listed times illustrate the duration of the mea-
surements. Red, pathological region comprising tumorous regions 
and infiltrating inflammatory cells; white, muscles; green, connec-
tive tissue; cyan, crypts; and blue, lumen. The comparison of the im-
ages convincingly demonstrated that the QCL IR imaging results are 
in good agreement with those obtained using the FTIR imaging. The 
observed deviations seem to be caused mainly by the use of an adja-
cent slice and the training of the FTIR classifier on samples of an-
other study which could slightly differ in sample handling and pro-
cessing. Furthermore, the previous FTIR classifier was performing 
the classification in one-step which is less accurate by means of tu-
mor detection. However, the improved classifier for the QCL imag-
ing recognizes infiltrating inflammatory cells in the first-level RF and 
cancerous regions in the second-level RF which allows a much more 
accurate classification. This figure was previously published in the 
supplement of a study by Kuepper et al. [54]. RF, random forest.
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led to the launch of the first commercially available QCL-
based IR microscope, Spero (Daylight Solutions, San Di-
ego, CA, USA). Studies using this instrument have report-
ed promising results [39, 52, 53]. However, limitations of 
coherence effects, low laser stability, and offset edges in 
mosaic datasets must be overcome. In the second genera-
tion (since 2017) of this instrument, these effects were 
minimized, thus allowing a combination with a newly de-
veloped classification model for CRC. In the first study, it 
was shown that the results of this new instrument are 
comparable to those of previously used FTIR spectrome-
ters [54]. It is now possible to analyze thin tissue sections 
within a few minutes, matching the same time range used 
for an immediate section. The QCL-based microscopes 
were 160 times faster as shown in a study with 100 samples 
(UICC stage II and III CRC tissue) as well as 20 tumor-free 
tissue samples from 110 randomly chosen patients older 
than 18 years. The automated tissue classification reached 
a sensitivity of 96% and a specificity of 100% comparable 
to the slow FTIR imaging (Fig. 2) [54]. The speed-up of 
the methodology was the most important step toward 
possible translation of label-free digital pathology into 
clinics because it allows for larger studies, which further 
enables label-free digital pathology to follow the same 
path as stain-based digital pathology for validation studies 
and subsequent translation into clinics. For example, by 
using QCL-based IR imaging, it became possible to detect 
MSI in unstained CRC tissue samples. For this purpose, 
the tissues from 100 patients were analyzed. Forty patients 
were used to train the classifier and 60 for verification. In 

validation, this method achieved 100% sensitivity and 
93% specificity (Fig. 3) [55]. This study showed, for the 
first time, that molecular changes can be represented. 
Since IR fingerprints reflect all molecular changes, future 
extension to the mutational level is very likely. However, 
similar to the use of machine learning on stained samples, 
these numbers should always be viewed critically until ex-
ternal validation is performed.

Similar to the developments in the image analysis of 
stained tissues, the application of deep learning to vibra-
tional spectroscopic images was performed. It was the sole 
introduction of fast IR microscopes that made this possi-
ble, as the availability of large datasets is crucial for deep 
learning. These approaches will allow for correlation of 
spatially resolved molecular information by IR imaging 
with morphological information directly from the spectral 
data cube. It was demonstrated that CNNs with architec-
tures designed to process both spectral and spatial infor-
mation could significantly improve classifier performance 
over per-pixel spectral classification for both Raman and 
IR imaging [56–58]. For better visualization, some groups 
try to digitally stain the IR images, which allow the transfer 
of spectral information to well-known visualization for 
clinical experts [59]. Thus, by using deep learning, any 
morphological staining, as well as a molecular analysis of 
the tissue sample, can be generated from a single IR imag-
ing analysis. Considering the nonexistent variance due to 
staining, this represents a unique advantage. Larger studies 
will follow, further bringing this innovative new label-free 
technology closer to clinical application.

Fig. 3. A The RF classifier structure and the 
corresponding color code are shown sche-
matically. The first RF (first row) deter-
mines healthy and pathologic regions, the 
second RF (second row) further classifies 
the pathologic regions to identify cancer 
regions, and the third RF (third row) deter-
mines microsatellite status of cancer re-
gions. B, C The resulting IR index color im-
ages are shown for a MSS CRC (B) and 
MSI-H CRC (C). This figure was previous-
ly published in a study by Kallenbach-
Thieltges et al. [55]. RF, random forest; IR, 
infrared; MSS, microsatellite stable; MSI-
H, high microsatellite instable.
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Digital Pathology and Molecular Analysis

For both the stain-based and label-free methods, there 
is yet another application besides classical tissue analysis. 
For example, spatially resolved classifications can be used 
to excise tissue using laser capture microdissection (LCM) 
and subsequently analyze it using omics methods. On the 
one hand, this enables automated tissue collection for es-
tablished tests. On the other hand, however, a deeper mo-
lecular understanding of the disease can be gained if, for 
example, the classifier recognizes other tissue regions as 
significant as the classical tool would. The label-free 
methods described are particularly superior for biomark-
er research, since tissues are not altered and can be col-
lected in as natural a state as possible. By integrating FTIR 
imaging with LCM for subsequent proteomic analysis, a 
new protein biomarker was identified. The protein bio-
marker helps to differentiate severe cystitis from carci-
noma in situ, which is a high-grade carcinoma [46]. Es-
pecially in large consortia for biomarker discovery, such 
automated methods may be of interest to further mini-
mize bias between participating partners in tissue selec-
tion.

Conclusion

This brief review is intended to provide an overview of 
current developments and go beyond the scope of the 
much-discussed approaches in digital pathology. Thus, 
methods of classical image analysis have long since found 
their place in everyday pathology, such as for counting 
cells. These approaches are now very advanced, but still 
require experienced users to recognize and avoid errors. 
However, the ongoing standardization of procedures, 
starting with the cutting and staining of thin tissue sec-
tions and ending with microscopic image acquisition, is 
making great strides. Today, classical image analysis is 

supplemented by AI, which allows systems to be trained 
for specific tasks for automated analyses. The studies so 
far are promising, but they still have some weaknesses 
that prevent their daily use. For example, it has hardly 
been shown how AI approaches react to staining errors 
or artifacts in samples, such as cauterization or freezing 
artifacts. If this is tested in clinical trials in the next few 
years, and their robustness is proven, AI will be an indis-
pensable support tool in everyday pathology, as it prom-
ises significant time savings. Unfortunately, AI methods 
are highly dependent on the number of samples available 
for training. This can be a problem especially for compli-
cated or rare questions. The label-free IR imaging de-
scribed above holds great promise. It allows not only 
morphological insights but also resolves detailed molecu-
lar changes in the genome and proteome. This makes it 
possible to work with significantly smaller sample quanti-
ties in AI which leads to equally good automated detec-
tions. It remains to be seen to what extent all these meth-
ods will revolutionize classical pathology, but it is certain 
that they are all methods that will support their operators, 
rather than replace them.
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