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Abstract 

Background: In the context of biomarker discovery and molecular characterization of diseases, laser capture 
microdissection is a highly effective approach to extract disease-specific regions from complex, heterogeneous tissue 
samples. For the extraction to be successful, these regions have to satisfy certain constraints in size and shape and 
thus have to be decomposed into feasible fragments.

Results: We model this problem of constrained shape decomposition as the computation of optimal feasible 
decompositions of simple polygons. We use a skeleton-based approach and present an algorithmic framework that 
allows the implementation of various feasibility criteria as well as optimization goals. Motivated by our application, we 
consider different constraints and examine the resulting fragmentations. We evaluate our algorithm on lung tissue 
samples in comparison to a heuristic decomposition approach. Our method achieved a success rate of over 95% in 
the microdissection and tissue yield was increased by 10–30%.

Conclusion: We present a novel approach for constrained shape decomposition by demonstrating its advantages for 
the application in the microdissection of tissue samples. In comparison to the previous decomposition approach, the 
proposed method considerably increases the amount of successfully dissected tissue.
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Introduction
Laser capture microdissection (LCM) [1] is a highly effec-
tive approach to extract specific cell populations from 
complex, heterogeneous tissue samples. In the dissection, 
a laser cuts around the boundary of a selected region and 
a subsequent laser pulse catapults the fragment into a 
collecting device. LCM has been used extensively in the 
context of biomarker discovery [2] as well as the molec-
ular characterization of diseases [3]. Since LCM sepa-
rates homogeneous and disease-specific regions from 
their heterogeneous and unspecific surrounding tissue 
regions, the characterizations obtained from genomic, 
transcriptomic or proteomic characterizations of samples 

processed with LCM provide more accurate molecular 
markers of diseases [4, 5]. With LCM being used more 
and more commonly in clinical studies, there is a need to 
automate all procedures involved in sample processing.

Practical application
Our contribution is motivated by an application intro-
duced in [2] in which a region of interest (ROI) to be 
dissected from the tissue sample is identified using label-
free hyperspectral infrared microscopy. In this approach, 
an infrared microscopic image of the sample yields infra-
red pixel spectra at a spatial resolution of about 5 μm. A 
previously trained random forest classifier assigns each 
pixel spectrum to one tissue component such as healthy 
or diseased, with the diseased class being further subdi-
vided into inflamed tissue as well as several subtypes of 
thoracal tumors. The general sample preparation task in 
the context of LCM is to dissect all tumor regions (or all 
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regions identified as one specific tumor subtype) from a 
sample. The current standard approach for the dissection 
with LCM is to draw shapes manually. This is severely 
limited, not only because it takes an inacceptable amount 
of time for large numbers of samples, but also because 
it is required that the human operator will subjectively 
decompose complex regions into smaller fragments. In 
this paper, we propose a novel automated decomposi-
tion approach. While our current contribution deals with 
the specific context of label-free infrared microscopy, our 
approach equally applies more broadly to LCM in the 
context of other microscopic modalities, most notably 
H&E stained (hematoxylin and eosin stained) images [4] 
for which recent digital pathology approaches facilitate 
reliable computational identification of disease specific 
regions [6, 7].

Problem statement and solution
In this paper, we address one central problem of pro-
cessing samples with LCM. That is, not all dissected 
fragments can be successfully collected due to various 
possible circumstances. Besides technical reasons as for 
example an incorrect focus of the laser, the main cause 
is assumed to be the size and morphology of the frag-
ment. The fragments must not exceed certain limits of 
minimal or maximal size and should be of approximately 
round shape. As the regions of interest (ROIs) in tissue 

samples consist of complex shapes of varying sizes, they 
oftentimes do not satisfy these constraints and therefore 
cannot be extracted from the tissue sample without any 
previous processing. This either increases the amount 
of necessary user-interaction or negatively affects the 
sample quality and thus compromises the advantages of 
LCM-based sample preparation.

Given a binary mask of a microscopic slide with the 
ROIs as the foreground, the image is preprocessed for 
LCM in such a way that the ROIs are reduced to a num-
ber of connected components without holes. By inter-
preting each of these connected components as a simple 
polygon, we can model the given problem of constrained 
shape decomposition as the computation of optimal fea-
sible decompositions of polygons (see Fig.  1). The con-
straints can be modeled as certain feasibility criteria and 
optimization goals. Our decomposition method utilizes 
a skeleton of the shape and follows a dynamic approach. 
Specifically, we restrict our cuts to certain line segments 
based on the skeleton. This not only results in simple cuts 
but also in a flexible framework that allows to integrate 
various criteria.

With this paper, we present a novel approach for the 
automated decomposition of tissue samples with lim-
ited user-interaction. Unlike previous decomposition 
methods used in the context of LCM, we placed a focus 
on the morphological properties of the fragments. In 

Fig. 1 Polygon decomposition in a histopathological tissue sample. Top: Regions of interest are selected from a histopathological tissue sample 
(H&E-stained image of a subsequent sample on the top left) in which different tissue types have been identified using the method in [2]. Bottom: 
After a preprocessing, each connected component is given as a simple polygon without holes, which is then decomposed using the proposed 
skeleton-based approach
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the experimental evaluation on lung tissue samples of 
patients with non-small-cell lung carcinoma, the pro-
posed approach achieved a higher success rate and the 
amount of successfully collected tissue was increased by 
10-30%. This paper is an extended version of the prelimi-
nary work presented in [8].

The paper is organized as follows: In "Related work" 
section, we discuss related work on decomposition algo-
rithms. In "Method" section, we introduce our algorith-
mic framework and discuss different possible feasibility 
criteria as well as optimization goals. In "Experimental 
results" section, we present experimental results and 
demonstrate the advantages of our method in compari-
son to a heuristic decomposition approach. We conclude 
with a summary of our results and future improvements 
in "Conclusion" section.

Related work
Polygon decomposition is an important tool in compu-
tational geometry, as many algorithms work more effi-
ciently on certain polygon classes, for example convex 
polygons [9]. Moreover, polygon decomposition is fre-
quently used in applications such as pattern recognition 
or image processing [9]. Object recognition, biomedi-
cal image analysis and shape decomposition are typical 
areas of application that utilize skeletons [10]. Skeletons 
are oftentimes used to analyze the morphology of a given 
shape and work especially well on elongated structures, 
such as vessels [11], pollen tubes [12] or neuron images 
[13, 14]. There are several shape decomposition meth-
ods based on the skeleton or some other medial repre-
sentation of a shape. However, most of these methods 
are designed for object recognition and thus focus on 
decomposing a shape into “natural” or “meaningful” 
parts [15–17]. In some approaches, even decompositions 
with overlapping parts are allowed [18, 19]. None of the 
established decomposition methods facilitate a straight-
forward introduction of adjustable size and shape con-
straints as needed for our application.

We utilize the skeleton for two main reasons: it is 
well-established to represent shape morphology and has 
proved useful for shape decomposition. As cancerous tis-
sue regions often present themselves as highly complex 
and ramified shapes, we apply the skeleton to obtain a 
morphological representation, based on which we com-
pute a decomposition that includes the morphological 
features.

Method
To improve the success rate of LCM, a shape decomposi-
tion method is needed that computes feasible fragments, 
i.e. fragments that fulfill certain constraints in size and 

morphology. We propose an algorithm for constrained 
polygon decomposition using a skeleton-based approach.

Skeletonization
Our approach is based on the medial axis or skeleton of 
the shape. The medial axis is defined as the set of points 
that have more than one closest point on the bound-
ary of the shape. The medial axis was introduced for 
the description of biological shapes [20, 21] but is now 
widely used in other applications such as object recog-
nition, medical image analysis and shape decomposition 
(see [10] for a survey). An important property is that the 
medial axis represents the object and its geometrical and 
topological characteristics while having a lower dimen-
sion [22, 23].

Formally, the medial axis of a shape D is defined as the 
set of centers of maximal disks in D. A closed disk B ⊂ D 
is maximal in D if every other disk that contains B is not 
contained in D. A point s is called skeleton point if it is 
the center of a maximal disk B(s) (see Fig. 2). For a skel-
eton point s, we call the points where B(s) touches the 
boundary the contact points—every skeleton point has at 
least two contact points. A skeleton S is given as a graph 
consisting of connected arcs Sk , which are called skeleton 
branches and meet at branching points. Given a simple 
polygon without holes the skeleton is an acyclic graph.

There are various methods for the computation of the 
medial axis in practice [10]. In general, the medial axis is 
very sensitive to noise in the boundary of object. This is 
a problem that often occurs in digital images and leads 
to spurious skeleton branches. Procedures that remove 
these uninformative branches are known as pruning 
methods. Pruning can be applied after skeletonization 
[24–26] or is included in the computation of the skeleton 
[27–30]. For our application, we utilize the skeletoniza-
tion and pruning method of Bai et  al. [29], which was 
previously used for other bioimaging applications [12, 

Fig. 2 Medial axis of a simple shape. This medial axis consists of five 
branches connected by two branching points. The skeleton point 
s is the center of a maximal disk B(s) and has three contact points 
{c1, c2, c3} on the boundary of the shape
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14]. This algorithm produces a discrete and pruned skel-
eton, which consists of a finite number of skeleton pixels 
as our skeleton points. This is favorable for our practical 
application as we have a discrete input and a discrete out-
put is expected. Furthermore, the computed skeleton has 
the property that every branching point has a degree of 
exactly three.

Skeleton‑based polygon decomposition
We consider the following problem: Given a simple poly-
gon P, compute an optimal feasible decomposition of P. 
A decomposition is feasible if every subpolygon is feasi-
ble, in the sense that it fulfills certain conditions on for 
instance its size and shape. We present an algorithmic 
framework that allows the integration of various criteria 
for both feasibility and optimization, which are discussed 
later. As for now, we only consider criteria that are locally 
evaluable.

In our skeleton-based approach, we only allow cuts 
that are line segments between a skeleton point and its 
corresponding contact points. Thus, the complexity of 
our algorithm mainly depends on the number of skel-
eton points rather than the number of boundary points 
of the polygon. Every subpolygon in our decomposition 
is generated by two or more skeleton points. We pre-
sent two decomposition algorithms: One in which we 
restrict the subpolygons to be generated by exactly two 
skeleton points and a general method. In the first case, 
each subpolygon belonging to a skeleton branch can be 
decomposed on its own and in the second case the whole 
polygon is decomposed at once.

Decomposition based on linear skeletons
First, we consider the restriction that the subpolygons 
are generated by exactly two skeleton points. In this case, 
the corresponding skeleton points have to be on the same 
skeleton branch Sk . In our computed skeleton, a branch-
ing point belongs to exactly three branches and thus has 
three contact points. Each combination of two out of 
the three possible cut line segments corresponds to one 
of these branches. Due to the Domain Decomposition 
Lemma (see Fig. 3, proof in [22]) and the following corol-
lary, we can decompose each skeleton branch on its own.

Theorem  1 (Domain Decomposition Lemma) Given a 
domain D with skeleton S(D), let p ∈ S(D) be some skele-
ton point and let B(p) be the corresponding maximal disk. 
Suppose A1,A2, . . . ,Ak are the connected components of 
D \ B(p) . Define Di = Ai ∪ B(p) for all i. Then:

S(D) =

k⋃

i=1

S(Di).

Moreover, we have

Corollary 2 Let p ∈ S(D) and A1,A2, . . . ,Ak be as 
above. For each skeleton point q  = p exists an i such that 
all contact points of q are contained in Ai.

Let Sk be a skeleton branch with a linear skeleton of size 
nk and let Pk be the polygon belonging to this branch. By 
Pk(i, j) , we denote a subpolygon that is generated by two 
skeleton points i and j on Sk (see Fig. 4). Thus, we have 
Pk(1, nk) = Pk . First, we consider the decision problem, 
which can be solved by using dynamic programming. For 
each skeleton point i from nk to 1, we determine X(i). X(i) 
is True if there exists a feasible decomposition of the 
polygon Pk(i, nk) . This is the case if either 

S(Di) ∩ S(Dj) = p ∀ i �= j.

Fig. 3 Domain decomposition lemma. The domain is decomposed 
based on the contact points of skeleton point p. The partial skeletons 
share only p as a common point. All contact points of any other 
skeleton point q are contained in exactly one of the connected 
components



Page 5 of 17Selbach et al. Algorithms Mol Biol           (2021) 16:15  

a) Pk(i, nk) is feasible or
b) there exists j > i such that Pk(i, j) is feasible and 

Pk(j, nk) has a feasible decomposition.

This is illustrated in Fig. 5. By choosing optimal points j 
during the computation, we can include different opti-
mization goals. If X(1) is True, the entire polygon has 
a feasible decomposition, which can be computed via 
backtracking.

Lemma 3 Given a subpolygon Pk with a linear skel-
eton Sk consisting of nk points, one can compute a feasible 
decomposition of Pk based on Sk in time O(nk

2F) , with F 
being a factor depending on the feasibility criteria.

Proof We initialize X(nk) = True . For every skeleton 
point i, for i = nk − 1 down to 1, we compute X(i) such 
that X(i) equals True if there exists a feasible decompo-
sition of Pk(i, nk) . To compute X(i), we consider O(nk) 
other values X(j) for i < j ≤ nk and check in time O(F) 
if the polygon Pk(i, j) is feasible. The correctness follows 
inductively. �

The factor F is determined by the runtime it takes 
to decide whether a subpolygon is feasible. This fac-
tor depends on for instance the number of points in the 
skeleton or in the boundary of the polygon. We discuss 
examples in the following "Feasibility constraints and 
optimization" section. After computing decompositions 
for each subpolygon corresponding to a skeleton branch, 

we can combine those to obtain a decomposition of the 
entire polygon. This leads to the following result.

Theorem  4 Given a simple polygon P with skeleton S 
consisting of n points, one can compute a feasible decom-
position of P based on the skeleton branches of S in time 
O(n2F) , with F being a factor depending on the feasibility 
criteria.

Note that there might not exist a feasible decomposi-
tion of the entire polygon or for certain subpolygons. By 
using this method, we are able to obtain partial decompo-
sitions. Thus, this approach can be favorable in practice.

General decomposition
In the general setting, subpolygons are allowed to be gen-
erated by more than two skeleton points. In this paper, 
we will briefly explain the idea of our method (see [31] for 
a more detailed description and the corresponding for-
mulas). Recall that our skeleton is an acyclic graph con-
sisting of a finite number of vertices, i.e. skeleton points. 
The skeleton computed for our application (method of 
Bai et al. [29]) has the property that the maximal degree 
of a skeleton point is three. We represent the skeleton as 
a rooted tree by selecting one branching point as the root 
(see Fig. 6). Since branching points belong to three differ-
ent branches, these nodes are duplicated in the skeleton 
tree such that each node corresponds to the cut edges on 
the respective branch. Our method and its runtime are 
based on two main observations.

Observation 5 The maximal number of skeleton points 
that can generate a subpolygon is equal to the number of 
endpoints in the skeleton, i.e. the number of leaves in the 
skeleton tree.

Observation 6 Every subpolygon can be represented as 
the union of subpolygons generated by just two skeleton 
points.

Let i be a node in the skeleton tree and Ti the subtree 
rooted in i. By P(i), we denote the subpolygon ending 
in the skeleton point i. This polygon corresponds to the 
subtree Ti in the given tree representation (see Fig.  7). 
For each node i (bottom-up), we compute if there exists 
a feasible decomposition of the polygon P(i). Such a 
decomposition exists if either 

a) P(i) is feasible or
b) There exists a feasible polygon P′ ending in i and fea-

sible decompositions of the connected components 
of P(i) \ P′.

Fig. 4 Subpolygon induced by skeleton points. The polygon Pk 
belongs to the skeleton branch Sk consisting of the points 1 to nk . 
Two skeleton points i and j together with line segments to their 
corresponding contact points induce a subpolygon Pk(i, j)

Fig. 5 Decomposition based on linear skeletons. The polygon 
Pk(i, nk) has a feasible decomposition if either polygon itself is feasible 
(left) or there exists a point j such that Pk(i, j) is feasible and Pk(j, nk) 
has a feasible decomposition (right)
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Thus, we have to consider all different combinations 
of skeleton points that together with i can form such 
a polygon P′ . In a top-down manner, we consider the 
different combinations of nodes [i1, i2, . . . , il] such that 
ij ∈ Ti and Tij ∩ Tij′

= ∅ for all j  = j′ . The polygon P′ 
corresponds to the subtree rooted in i with i1, i2, . . . , il 
as the leaves, depicted in blue in Fig.  8. Note that we 
can compute P′ as a union of subpolygons iteratively. 
We check if P′ is feasible and if we have feasible decom-
positions for each P(ij) , meaning every subtree Tij (gray 
in Fig. 8). Because of Observation 5, we know that l ≤ k , 
for k being the number of leaves in the skeleton tree. 
We have a feasible decomposition of the whole polygon 
if there exists one of the polygon P(r). This computation 
dominates the runtime with the maximum number of 
combinations to consider being in O(nk) . Note that this 

approach does not depend on the initial choice of the 
root node.

Theorem  7 Given a simple polygon P with skeleton S 
consisting of n points with degree at most three, one can 
compute a feasible decomposition of P based on S in 
O(nkF) time, with k being the number of leaves in the skel-
eton tree and F as above.

Feasibility constraints and optimization
The proposed polygon decomposition method is a versa-
tile framework that can be adjusted for different feasibil-
ity constraints and optimization goals. With regard to the 
application in LCM, we considered criteria based on size 
and shape. As stated before, it is assumed that the main 

Fig. 6 Tree representation of the skeleton graph. Representing the skeleton graph as a tree rooted at the point r. Every node in the tree represents 
a possible cut in the polygon. Therefore the branching points are duplicated to provide the cuts on the respective branches

Fig. 7 A subpolygon and its corresponding subtree. The subpolygon P(i) ending in the skeleton point i is represented by the subtree Ti
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cause for unsuccessful dissections lies in an incorrect size 
or morphology of the considered fragments. In LCM, a 
laser separates a tissue fragment from its surrounding 
sample leaving a small connecting bridge as the impact 
point of a following laser pulse, which catapults the 

fragment into a collecting device. As the laser burns part 
of the boundary, the fragment has to have a certain mini-
mal size to ensure that enough material is supplied to be 
analyzed. On the other hand, the size cannot be too large 
or otherwise the force of the laser pulse does not suffice 

Fig. 8 Possible combination of skeleton points considered in the decomposition of a subpolygon. In the decomposition of a subpolygon P(i), 
different combinations of skeleton points in the subtree Ti are considered. The resulting subpolygons can be represented as subtrees (blue) in the 
tree representation spanning between nodes of these skeleton points
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for the transfer process. Furthermore, observations show 
that the dissection often fails due to an irregular shape of 
the fragment. Specifically, elongated shapes or fragments 
with narrow regions (bottlenecks) seem to be problem-
atic. The tissue can tear at these bottlenecks and is only 
transferred partly or not at all because the laser pulse is 
concentrated on only a small part of the boundary.

In the following, we describe the implementation of 
different constraints that we considered based on our 
application. For simplicity, we limit the description to 
the decomposition algorithm for linear polygons, but 
all mentioned constraints can be applied to the general 
decomposition method as well.

Feasibility constraints
For the size constraint, we restricted the area of the 
subpolygons. Given two bounds l and u, a polygon P is 
feasible if l ≤ A(P) ≤ u , for A(P) being the area of the 
polygon. One could also apply this constraint on the 
number of boundary points instead of the area. We 
implemented different shape constraints. On the one 
hand, we considered approximate convexity. Then, a 
polygon P is feasible if every inner angle lies between two 
given bounds. As this criterion does not prevent elon-
gated shapes, we considered fatness instead. Fatness can 
be used as a roundness measurement and is defined by 
the aspect ratio AR(P) of a polygon, which is the ratio 
between its width and its diameter [32–34]. For a sim-
ple polygon, the diameter is defined as the diameter of 
the minimum circumscribed circle and the width as the 
diameter of the maximum inscribed circle. A polygon P 
is called α-fat if AR(P) ≥ α . For the fatness constraint, we 
define a polygon as feasible if it is α-fat for some given 
parameter α ∈ (0, 1] . Higher values of α result in frag-
ments that are more circular and less elongated in shape.

For area as well as approximate convexity, we can com-
pute the required values incrementally if the values for all 
subsequent subpolygons are given beforehand. Therefore, 
we can check the feasibility in constant time. Thus, a fea-
sible decomposition using these criteria can be computed 
in time O(n2 +m) for n being the number of skeleton 
points and m the number of boundary vertices. If the 
fatness criterion is used, one has to calculate the aspect 
ratio of each polygon, which takes O(m logm) time and 
therefore results in a runtime of O(n2m logm).

Optimization goals
The algorithm computes the value X(i) for each skeleton 
i. For the decision problem, we defined X(i) to be True 
if there exists a feasible decomposition of the polygon 
P(i,  n). With a redefinition of X(i), we can implement a 
variety of optimization goals. For a point i, let I be the 
set of points j such that P(i,  j) are feasible. One possible 

optimization goal is finding a minimal decomposition 
by minimizing the number of fragments (MinNum). We 
define X(i) as the number of subpolygons in an optimal 
feasible decomposition of P(i, n), set X(n) = 0 and com-
pute X(i) = minj∈I X(j)+ 1 . By minimizing the length of 
cut edges (MinCut), shorter cuts are preferred and thus 
preferably placed at bottlenecks in the polygon. Since 
every skeleton point i is the center of a maximal disk, we 
can obtain the cut length by the corresponding radius r(i). 
We can define X(i) either as the length of the longest cut 
or as the sum of cut lengths in an optimal decomposition 
of P(i,  n) and compute X(i) = max{minj∈I X(j), r(i)} or 
X(i) = minj∈I X(j)+ r(i) . The runtime for both MinNum 
and MinCut is the same as for the decision problem. Fur-
thermore, we considered maximizing the fatness (Max-
Fat) as an optimization goal. A decomposition is optimal 
if the smallest aspect ratio is maximized. We define x(i) 
as the value of the smallest aspect ratio and compute 
X(i) = maxj∈I {min{X(j),AR(P(i, j))}} . Applying fatness 
as a feasibility constraint or an optimization goal results 
in the same runtime because both approaches require the 
calculation of the aspect ratios of all subpolygons.

Comparison of criteria
Our algorithm facilitates the use of a wide range of feasi-
bility criteria and optimization goals, which can be com-
bined with each other. Note that for certain combinations 
other (faster) methods might exist. One example is find-
ing the minimal (MinNum) decomposition in which the 
area of the subpolygons is bounded. For polygons with 
linear skeletons this can be modeled as finding the mini-
mal segmentation of a weighted trajectory (in O(n log n) 
time [35]). For general polygons, this problem can be 
modeled as computing the minimal (l,  u)-partition of a 
weighted cactus graph (in O(n6) time [36, 37]).

The selection of constraints used for the algorithm 
obviously affects the resulting decomposition. The num-
ber of subpolygons as well as the position of cuts varies 
noticeably. Depending on the underlying application, 
one might choose suitable constraints. In the following, 
we present decompositions for different combinations of 
criteria and assess their suitability for our specific appli-
cation. The typical results are exemplified using a ROI 
polygon of a lung tissue sample (see Fig. 9).

Panel A and B in Fig. 9 illustrate the effect of the size 
criterion. Having a larger upper bound obviously results 
in fewer subpolygons. The MinNum optimization goal 
minimizes the number of subpolygons, but the solutions 
are not necessarily unique and one optimal decomposi-
tion is chosen arbitrarily. This can be observed at the 
bottom-most skeleton branch in both these decompo-
sitions as the cuts in A would be feasible with the con-
straints from B as well. In panel C and D of Fig.  9, the 



Page 9 of 17Selbach et al. Algorithms Mol Biol           (2021) 16:15  

fatness constraint was applied in form of a lower bound 
on the aspect ratio of subpolygons. In comparison to the 
decomposition depicted in A, this criterion avoids the 
tendency towards elongated fragments. However, tighter 
bounds do not necessarily result in better outcomes as a 
feasible decomposition might not exist at all. This case is 
illustrated in panel D, where the algorithm did not find 
a feasible decomposition for the polygon parts that are 
depicted in gray. For our application, this would not be 
favorable as it reduces the amount of extracted tissue 
material.

We applied the different optimization goals denoted 
by MinNum (panel A), MinCut (panel E) and MaxFat 
(panel F) with the same feasibility constraint. Choosing a 

different optimization goal will not influence the amount 
of area in the decomposition, but the quantity and posi-
tions of cut edges may change considerably. These 
changes are expected to affect the amount of successfully 
dissected tissue fragments in the microdissection. When 
looking at the decompositions of the top left skeleton 
branch in those three polygons, one notices that the ones 
in A and E have the same number of fragments, but with 
MinCut a cut with a lower length is chosen. Maximizing 
the fatness usually results in a higher number of subpol-
ygons. As can be seen in panel F, the resulting subpoly-
gons are less elongated and more circular in shape. We 
expect these to be the desired shapes for our application. 
Hence, we used the area constraint in combination with 

Fig. 9 Decompositions based on different criteria. Exemplary decompositions obtained by applying the algorithm based on linear skeletons with 
different feasibility constraints and optimization goals. A area in [50, 300] , MinNum. B area in [50, 500] , MinNum. C area in [50, 300] , fatness ≥ 0.4, 
MinNum. Darea in [50, 300] , fatness ≥ 0.5, MinNum. E area in [50, 300] , MinCut. F area in [50, 300] , MaxFat
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the MaxFat optimization in our experiments and the fol-
lowing comparison of decomposition methods for LCM.

Experimental results
Experimental setup
For the evaluation of our algorithms, we conducted LCM 
experiments on shapes obtained from infrared micro-
scopic images of 10 thin sections of FFPE (formalin-fixed 
paraffin-embedded) lung tissue samples from patients 
with non-small-cell lung carcinoma. The pixel spectra of 
the images were classified into different tissue types using 
a random forest classifier as described in [2]. All pixel 
positions belonging to the tumor class were chosen as the 
regions of interest (ROI). The binary mask of the ROI was 
preprocessed by a morphological opening followed by a 
morphological closing and subsequent hole filling. Each 
connected component of the preprocessed binary mask 
is given as a simple polygon on which we applied two dif-
ferent decomposition approaches. The number of input 
polygons for our experiments ranged from 14 to 109 per 
sample with a total amount of 441. The resulting decom-
positions serve as the input for LCM. Each fragment is 
transmitted in form of a circular list of discrete boundary 
points.

For the experiment, we used our algorithm based 
on linear skeletons such that each skeleton branch is 
decomposed separately. This follows the practical con-
sideration that a polygon as a whole may not possess a 
feasible decomposition, while some individual branches 
do. The resulting skeletons consisted of roughly 80 to 
1000 points, involving around five to ten branches for 
each polygon to be decomposed, see Figs. 9, 10 for typi-
cal examples. We applied a size constraint as lower and 
upper bounds on the area of the subpolygons and com-
puted an optimal decomposition in which the fatness, i.e. 
the minimum aspect ratio of the subpolygons, is maxi-
mized. We denote this approach by MaxFat.

We compare our approach to a heuristic decomposi-
tion method, which was used to decompose tissue sam-
ples for LCM in previous work. As this method follows a 
bisection approach, we denote it by BiSect. Unlike Max-
Fat, this method includes merely a size constraint and no 
shape criterion or optimization goal. A polygon is decom-
posed by recursive bisection if its area exceeds an upper 
size bound. If the area of a (sub)polygon is below a given 
lower bound, it is discarded. Every bisection is designed 
to leave a strip of tissue behind such that each subpoly-
gon retains contact to the surrounding membrane of the 
microscopic slide in order to meet a technical require-
ment of the specific LCM system used in this study for 
the dissection to be possible. The MaxFat decomposition 
does not include these strips because all subpolygons 
intersect with the boundary of the input polygon.

Both decomposition methods were applied with the 
same area bounds, namely a minimal and maximal area 
of 100  px (ca. 1800  μm2) and 2800  px (ca. 50000  μm2) 
respectively. The main focus of the development of a 
novel decomposition method lies in the reduction of tis-
sue loss. This is determined by the amount of area in the 
decomposition itself as well as the amount of successfully 
dissected fragments. First, we compare the methods and 
the resulting decompositions on a computational level. 
Then, we analyze their performance in the practical set-
ting with LCM.

Computational results
We examine the results of the MaxFat and BiSect decom-
position on three different levels: fragments (subpoly-
gons), components (ROI polygons) and samples. We 
examine the size of the decompositions, the area loss and 
the morphology of the fragments.

Decomposition size
The sampling consisted of 441 components with an aver-
age area of 4500 px (ca. 81300 μm2). The MaxFat decom-
position over all ten samples contained 4143 fragments 
with an average of 9.36 fragments per component. The 
BiSect decomposition consisted of considerably less frag-
ments with an average of 2.36 fragments per component 
and 1089 for the entire sampling.

BiSect achieves a smaller decomposition size because 
most components did not require many bisections for the 
fragments to fulfill the given area constraints (see Fig. 10 
A2, B2). With MaxFat, every skeleton branch in decom-
posed individually. Therefore, most decompositions con-
sist of at least as many fragments as there are branches in 
the skeleton (see Fig. 10 A1, B1).

Area loss
Figure 11 depicts the area loss on the level of individual 
components. The mean area loss with MaxFat is slightly 
lower than the one with BiSect (MaxFat M = 8.96%, 
BiSect M = 10.81%). However, the distribution of Max-
Fat shows a greater variability in values, a larger stand-
ard deviation and some high-loss outliers (MaxFat SD 
= 11.26, BiSect SD = 6.11). For BiSect, the variability is 
lower and there are less outliers. On the level of samples, 
one can see that in 8 of 10 cases the area loss with Max-
Fat is lower than the one with BiSect (see Table 1). The 
decompositions with MaxFat contained up to 10% more 
area. The area loss averages around 10.77% for MaxFat 
and 16.35% for BiSect.

Both methods inherently involve area loss. With BiSect, 
area loss occurs due to the strips left behind by every 
bisection. Therefore, the amount increases proportional 
to the size of the components and the necessary cuts 
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Fig. 10 Exemplary decompositions with MaxFat and BiSect. Decompositions of four exemplary components from the tissue samples. Left: 
decomposition with MaxFat. Right: decomposition with BiSect
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(see Fig. 10). With MaxFat, area is lost for each skeleton 
branch for which a feasible decomposition did not exist. 
This mainly occurs if the corresponding (sub)polygon is 
either too slim or too wide. The first case is depicted in 
panel A1 of Fig. 10: Because the area of the gray polygons 
belonging to the bottom two branches was below the 
given lower bound, a feasible decomposition did not exist 
and their area was lost. This can be attributed to short-
comings of the underlying skeleton pruning method. 
Improving the pruning of the skeleton may avoid such 
short branches. The second case of too wide shapes is 
exemplified in panel D1. If the upper area bound is rela-
tively small, the MaxFat decomposition of a wide shape 
leads to either thin-slicing or no feasible solution at all. 
This is due to our definition of the cut edges, which do 
not allow internal decompositions. This also illustrates 
that our approach is tailored towards more complex, 
ramified shapes rather than fat objects. It is noteworthy 
that the polygon depicted in panel D1/D2 of Fig. 10 cov-
ers an area of around 43,000  px (ca. 7,77,000  μm2) and 
thus represents a huge outlier in our sampling.

These observations coincide with the presented results. 
For MaxFat, the first cause of area loss might occur fre-
quently but merely contributes a small value to the over-
all loss. The second cause does not appear as often in the 
samples because the average area of the components is 
fairly small, but obviously results in a large amount of 

area loss. This contributes to the higher standard devia-
tion and outliers that were observable on the level of 
individual components. The results for entire samples 
suggest that the samples are dominated by components 
that cause small or no area loss when decomposed with 
MaxFat. Since the resulting fragments for each compo-
nent in one tissue sample are collectively gathered, the 
quality of the decomposition should be assessed on the 
level of samples. Regarding area loss during decompo-
sition, MaxFat generally achieved better results. How-
ever, the quality of the methods is ultimately determined 
by their performance in practice and their success with 
LCM. Therefore, practical evaluations are necessary. 
Here, we expect the morphology of the fragments to be 
a critical factor.

Morphology
We compared both decomposition methods based on the 
resulting fatness, i.e. aspect ratio, of the fragments. This 
value measures the circularity of the shape. On the level 
of individual fragments, the aspect ratios in BiSect pre-
sent themselves in the pattern of a normal distribution 
whereas the distribution for MaxFat is clearly left-skewed 
(see Fig. 12). The average aspect ratio of fragments over 
all samples is considerably higher with MaxFat (MaxFat 
M = 0.58, BiSect M = 0.39). We observe similar results 
when considering the average aspect ratio in the decom-
positions of components (see Fig.  13). The values for 
MaxFat are larger and the variability is smaller (MaxFat 
M = 0.58, BiSect M = 0.36). The standard deviation for 
MaxFat is half as high as the one of BiSect (MaxFat SD 
= 0.05, BiSect SD = 0.1). For over 75% of components, 
the average fatness in the decompositions computed with 
MaxFat was higher than 0.5, whereas with BiSect nearly 
75% have an average fatness lower than 0.4.

BiSect applies only a size constraint and a compo-
nent is only decomposed if its area exceeds the given 
upper bound. Therefore, many components are not 
decomposed, but their shape is oftentimes elongated 
and ramified as can be seen in panel A2 of Fig.  10. 
Because this method follows a bisection approach, the 
cut placement creates fragments with irregular shapes 
and narrow bottlenecks (see Fig. 10 C2). The exception 
can be observed in large, round components as their 
decomposition resembles a grid pattern (see panel D2 
of Fig. 10). In this case, the resulting fragments achieve 

Table 1 Comparison of area loss for samples as the combined loss over all components for MaxFat and BiSect

Sample 1 2 3 4 5 6 7 8 9 10

MaxFat 8.58 21.43 5.22 23.85 3.42 11.71 3.40 13.56 10.45 6.07

BiSect 10.62 18.04 13.44 23.41 13.47 19.02 13.00 14.59 18.48 19.46

Fig. 11 Comparison of area loss for components. Distribution of 
the area loss (in%) in the decompositions of individual components 
contained in the sampling (n = 441). Comparison of MaxFat (M = 
8.96%, SD = 11.26) and BiSect (M = 10.81%, SD=6.11)
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a higher fatness. The results suggest that without the 
application of some shape criterion the BiSect decom-
position does not naturally result in fragments of large 
fatness. MaxFat, on the other hand, utilizes both size 
and shape criteria and tries to maximize the fatness of 
a decomposition. This results in smaller fragments that 
are less elongated and rounder in shape (see Fig.  10). 
The computational evaluation reveals that MaxFat con-
sistently obtains higher fatness values. This strengthens 
our choice to include the fatness criterion in the opti-
mization goal rather than the feasibility constraints. 
Even without applying a strict bound on the fatness, 
we were able to achieve high fatness values without the 
risk of area loss due to the non-existence of a feasible 
decomposition. The success of a dissection using LCM 
depends on the size and morphology of the tissue frag-
ment. We hypothesize that approximately round shapes 
have a higher chance to be successfully collected. As 

MaxFat consistently obtains such fragments, we sus-
pect this to be the main advantage of this decomposi-
tion method in the practice. Hence, we expect a higher 
success rate in the practical application with LCM.

Running times
The computations were executed on a Windows PC 
(Intel Core i5-8600 CPU, 16 GB RAM). The proposed 
approach consists of a skeletonization and a subsequent 
decomposition with MaxFat. The average computation 
time for one input polygon was 0.63 s for the skeletoni-
zation, 14.38 s for the decomposition with MaxFat and 
0.43 s for the decomposition with BiSect. When consid-
ering median values, we see that one for MaxFat (0.24 
s) is lower than the one for BiSect (0.47 s). This suggests 
that MaxFat can perform very fast on the majority of 
inputs but more slowly on others. In general, the run-
ning time for BiSect fairly low, as many polygons are 
not decomposed at all. For MaxFat, on the other hand, 
the time complexity depends on the number of bound-
ary points as well as the number of skeleton points.

We looked at one sample in more detail. Sample 7 
consisted of 63 polygons with different boundary (M 
= 274.63, Min = 131, Max = 1104) and skeleton (M 
= 152.55, Min = 81, Max = 507) sizes. Therefore, the 
MaxFat decomposition showed a variation in runtimes 
(M = 1.77 s, Min = 0.21 s, Max = 29.57 s). The runt-
imes for BiSect were consistent (M = 0.47 s, Min = 
0.47 s, Max = 0.5 s). In total, the decomposition with 
BiSect required 35.62 s and resulted in 103 fragments. 
The proposed approach was performed in ca. 3.52 min 
(1.69 min skeletonization and 1.83 min decomposition) 
and resulted in 487 fragments. Note that the runtime of 
MaxFat can be optimized by parallelizing the execution 
of the algorithm not only on the different polygons in 
one sample but also on the different skeleton branches.

Fig. 12 Comparison of the fatness for fragments. Distribution of aspect ratios of individual fragments contained in the decompositions with MaxFat 
in A (n = 4151, M = 0.58, SD = 0.1) and BiSect in B (n = 1089, M = 0.39, SD = 0.11)

Fig. 13 Comparison of the average fatness for components. 
Distribution of average aspect ratios in the decompositions of 
all individual components contained in the sampling (n = 441). 
Comparison of MaxFat (M = 0.58, SD = 0.05) and BiSect (M = 0.36, 
SD = 0.1)
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Practical results with LCM
The practical evaluation of both shape decomposition 
approaches consisted of the dissection of all computed 
fragments with LCM. Because one tissue sample cannot 
be dissected twice, the experiment was performed on 
empty microscopic slides. Therefore, it was not possible 
to compare the amount of successfully dissected tissue by 
measuring for example the protein content. The evalua-
tion was restricted to visual assessment.

Classification of dissected fragments
The dissection of each fragment was observed and classi-
fied into the following categories. A fragment was labeled 
“successful” if it disappeared from the field of view after 
the laser pulse. In this case, we expect it to be success-
fully transferred into the collecting device. Unsuccessful 
fragments were further divided into three categories. The 
label “torn” describes fragments that tore during the dis-
section. Because they were only partially transferred, the 
collected area is not measurable. A fragment was labeled 
“fallen” in the following two cases. The fragment fell 
before the transferring process, which might be the case 
if all connections to the surrounding membrane were 
already severed before the laser pulse. The other case cov-
ers fragments that fell back onto the slide (in the field of 

view) after the laser pulse. One might only conjecture the 
reasons: As mentioned before, the size and shape of the 
fragments, the focus of the laser pulse as well as its posi-
tion on the boundary of the fragment affect the transfer-
ring process and its success. The last category “too small” 
contains fragments of such a small size that the laser did 
not leave enough material to be collected.

Figure  14 depicts the distribution of assigned labels 
based on the number of fragments in each category. In 
both decompositions, the majority of fragments was 
labeled as successful. The amount of successfully dis-
sected fragments of MaxFat is consistently over 90% 
for all samples. The distribution for BiSect shows more 
variation between the samples. On average, 95.44% of the 
fragments of MaxFat were successful, 4.34% were labeled 
as fallen and merely 0.22% as torn. None of the fragments 
were too small. BiSect averages around 80.98% successful, 
14.99% fallen, 2.39% torn and 1.64% too small fragments.

Area loss and success rates
Tables 2, 3 show the success rates of MaxFat and BiSect 
with regard to tissue yield, the results are also visualized 
in Fig. 15. We distinguish two different success rates. The 
success rate of the microdissection (Table  2) represents 
the ratio of the area of the fragments that was successfully 

Fig. 14 Distribution of labels assign during LCM. Comparison of the percentage of labels assigned to fragments during laser capture 
microdissection for MaxFat (A) and BiSect (B)

Table 2 Comparison of microdissection success rates for MaxFat and BiSect

The LCM success rate (in%) describes the amount of tissue area that was collected from the fragments by LCM

sample 1 2 3 4 5 6 7 8 9 10

MaxFat 90.00 92.72 98.05 96.58 94.77 95.74 97.04 95.75 96.49 97.43

BiSect 80.39 76.61 73.02 81.79 81.79 79.19 81.47 81.09 85.10 95.80
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collected as computed by the LCM system. Over all ten 
samples, the values for MaxFat are higher than for BiSect. 
The largest difference can be observed for sample 3 with 
a value of 25.03%. Overall, the success rate for the micro-
dissection averages at 95.46% for MaxFat and 80.99% for 
BiSect. Using these percentages, we calculated the overall 
success rate (Table 3) of both decomposition methods by 
combining the following factors: The ROI area contained 
in the samples (combined area of all components), the 
amount of area lost due to the decomposition algorithm 
and lastly the success rate of the microdissection. For 
example, the MaxFat decomposition resulted in 8.58% 
area loss for sample 1 (see Table 1). Thus, 91.42% of the 
original area was contained in the fragments for LCM. 
The microdissection showed a success rate of 90%, which 
results in an overall success rate of 82.28%. This means 
that 82.28% of the tissue contained in sample 1 could be 
collected using the MaxFat decomposition approach. For 
all ten samples, the overall success rate of MaxFat was 

at least 10% higher. In sample 3, the amount of lost tis-
sue could potentially be decreased by 29.72% when using 
MaxFat rather than BiSect. On average, the tissue yield 
with the proposed decomposition approach is 17.55% 
higher.

The practical evaluation confirms our conjecture that 
the proposed decomposition method performs better 
in practice than the heuristic bisection approach. The 
amount of successfully dissected fragments is consist-
ently higher with the MaxFat approach. With BiSect, this 
rate varies more noticeably and the algorithm was not 
able to filter out fragments that did not fulfill the lower 
area constraint. Besides the quantity of successfully dis-
sected fragments, the tissue area that was collected with 
MaxFat was larger as well. Together with the smaller area 
loss in our decomposition, which we observed in the 
computational assessment, the proposed method proved 
to minimize the tissue loss considerably. When used on 
actual tissue samples, our decomposition method will 
increase the tissue yield and thus the amount of protein 
or DNA available for further analysis.

Conclusion
In this paper, we presented a skeleton-based decompo-
sition method for simple polygons as a novel approach 
to decompose disease-specific regions in tissue samples 
while aiming to optimize the amount of tissue obtained 
by laser capture microdissection (LCM). The lack of 
previous benchmark methods and results is somewhat 
remarkable. It indicates that previous studies utilizing 
LCM relied on manual decomposition of the regions to 
be dissected, which is clearly impractical in clinical study 
settings involving dozens or hundreds of samples. As the 
first fully automated approach, we provide a conceptual 
contribution that may pave the way for making LCM 
feasible in large clinical studies. Our approach will also 
facilitate systematic assessment of optimal size and mor-
phology criteria for LCM experiments, which would be 
difficult if not impossible to conduct based on manual 
shape decomposition.

Size and morphology of the fragments are assumed to 
be the key factors that influence the success of dissec-
tions using LCM. Our approach is designed to minimize 
tissue loss by utilizing a size constraint and optimizing 
the shapes towards fat or circular fragments. As we 

Table 3 Comparison of overall success rates for MaxFat and BiSect

This success rate (in%) represents the overall tissue yield from as sample by combining the LCM success rate with the area loss during the decomposition of 
components, i.e. how much area of the original ROI is contained in the computed fragments

sample 1 2 3 4 5 6 7 8 9 10

MaxFat 82.28 72.85 92.93 73.54 91.53 84.53 93.74 82.77 86.41 91.52

BiSect 71.85 62.79 63.21 62.64 70.78 64.13 70.88 69.26 69.38 77.16

Fig. 15 Comparison of success rates. Comparison of the amount of 
tissue loss and the overall success rates of MaxFat and BiSect. With 
100% being the ROI area in the sample, the two lighter bar segments 
correspond to the percentage of tissue loss in the decomposition and 
the microdissection, respectively. The darkest segment represents the 
percentage of the original area that was successfully collected during 
the microdissection. This value represents the overall success rate
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demonstrated, this translates into practice when com-
paring our approach to a recursive bisection method 
that is currently used and only applies a size constraint.

Our approach is tailored towards complex morpho-
logical structures that are commonly found in can-
cerous tissue and are usually the most challenging to 
dissect using LCM without major loss of tissue mate-
rial. Not surprisingly, the algorithm does not perform 
as well when decomposing relatively large and fat 
shapes. However, such shapes do not occur frequently 
and the impact on the overall success seems to be mini-
mal. These shapes can be easily decomposed using 
simple approaches, e.g. the bisection-based approach, 
without major tissue loss. Thus, we plan to improve our 
method by distinguishing these shapes and compute 
their decompositions separately.

The implementation of our approach relies on a (dis-
crete) skeletonization of the underlying polygons. Spe-
cifically, we utilize the approach of Bai et al. [30], which 
uses a heuristic pruning approach. While other high-
quality implementations of discrete skeletonization 
algorithms exist [38, 39], the approaches lack pruning 
strategies that are essential for our approach to pro-
duce practically relevant results. It is likely that recent 
improvements for skeletonization and pruning will fur-
ther improve our results. For example, recent methods 
of Durix et al. [27, 28] promise to avoid short and other 
spurious branches, which contributed to area loss in 
our decomposition. More broadly, concepts for robust 
skeletonizations have been proposed based on the �
-medial axis [25, 40], which are built on solid theoreti-
cal grounds and thus may provide useful concepts for 
further improved shape decomposition approaches. 
Here, skeletonization is considered as an input to our 
decomposition method. While better and more robust 
skeletonization may further improve performance, a 
detailed investigation is beyond the scope of our pre-
sent study.

The practical evaluation with LCM showed the 
advantage of using the proposed decomposition 
method. Over the entire sampling, our decompositions 
contained more successful fragments and we achieved 
a success rate of 95% in the dissection. In combination 
with the lower area loss during the decomposition, we 
were able to minimize the overall tissue loss for all sam-
ples and increased the tissue yield by 10–30%. Over-
all, our work contributes to further optimization and 
automation of LCM and thus promises to contribute to 
the further maturing of the technology and enhancing 
its suitability for systematic use in larger scale clinical 
studies.
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