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ABSTRACT

In recent years, deep learning has been the key driver of breakthrough developments in computa-
tional pathology and other image based approaches that support medical diagnosis and treatment.
The underlying neural networks as inherent black boxes lack transparency, and are often accom-
panied by approaches to explain their output. However, formally defining explainability has been
a notorious unsolved riddle. Here, we introduce a hypothesis-based framework for falsifiable ex-
planations of machine learning models. A falsifiable explanation is a hypothesis that connects an
intermediate space induced by the model with the sample from which the data originate. We instan-
tiate this framework in a computational pathology setting using label-free infrared microscopy. The
intermediate space is an activation map, which is trained with an inductive bias to localize tumor.
An explanation is constituted by hypothesizing that activation corresponds to tumor and associated
structures, which we validate by histological staining as an independent secondary experiment.
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Falisifiable Explanations of Machine Learning Models

1 Introduction

Classifications obtained from machine learning models in medical applications are in general black-box decisions,
and interpreting their outcome in is often considered key for making machine learning based diagnoses or treatment
decisions transparent and trustworthy [Abels et al., 2019, Kelly et al., 2019, Holzinger et al., 2019, Rudin, 2019]. The
power of deep learning based classification has become particularly evident in image-based diagnostic settings, most
notably in radiology and pathology [Litjens et al., 2017, van der Laak et al., 2021], where the need for interpretation has
commonly been addressed by approaches such as linear relevance propagation (LRP) [Bach et al., 2015, Lapuschkin
et al., 2019], saliency maps [Simonyan et al., 2013], Grad-CAM [Selvaraju et al., 2017] or class activation maps
[Zhou et al., 2016]. These methods operate in a post-hoc manner in the sense that they operate on the neural network
after it has been trained. Using the trained network along with an input image, they yield segmentations or heatmap
representations [Zech et al., 2018, Hägele et al., 2020, Ding et al., 2019, Korbar et al., 2017, Bai et al., 2020, Hosny
et al., 2018] that localize relevant patterns and can be assessed by domain experts. However, while unveiling an
interpretable output, existing approaches lack a clear definition what constitutes a valid interpretation or explanation.

Ever since Lipton diagnosed the notion of interpretability to be ill-defined [Lipton, 2018], several attempts have been
made to define interpretability and explainability in the context of machine learning models, as surveyed in Roscher
et al. [2020], Guidotti et al. [2018], Holzinger et al. [2019] and recently in Samek et al. [2021]. However, it has
been stated explicitly that no consensus definition has emerged, neither in a general sense [Guidotti et al., 2018] nor
specific to biomedical image analysis [van der Laak et al., 2021]. Montavon et al. [2018] define an interpretation
as a mapping of an abstract concept into a domain that the human can make sense of, while an explanation is the
collection of features of the interpretable domain, that have contributed for a given example to produce a decision.
The lack of a clear definition what an interpretation is has also been noted by Murdoch et al. [2019], who embed an
interpretation in a so-called data-science life cycle and introduce the predictive, descriptive, relevant framework as a
basis for interpretable machine learning. Despite these attempts towards definitions, apparently none has emerged as
a consensus.

The challenge to define interpretability and explainability in the context of experimental research stems from the seem-
ingly dichotomous approaches behind experimental research and machine learning. Experimental research, on the one
hand, is hypothesis-centric by following hypothetico-deductivism, where predictions derived from a general and fal-
sifiable hypothesis are applied to specific cases that either corroborate or falsify the hypothesis. Machine learning, on
the other hand, derives general models from specific training examples and thus follows inductive [Wolpert, 1996] (or
sometimes transductive [Vapnik, 2006]) reasoning. In machine learning, human expert-centric studies are common
and legitimate practice in the sense that models are trained inductively on ground truth labels obtained from a human
expert or a panel of human experts [Bulten et al., 2020, Abels et al., 2019, Amgad et al., 2019, Sirinukunwattana et al.,
2017]. In the context of deductive experimental research, however, it appears reasonable if not inevitable to define
explainability in a hypothesis-centric manner rather than an expert-centric manner. The early and remarkable work by
Michalski [1983] on concept learning deserves credit for assigning the central role to hypotheses and explicitly ad-
dressing the problem of induction. Yet, Michalski’s approach of learning structural descriptions from examples lacks
an explicit role of validating hypotheses in a deductive manner.

Here, we introduce an abstract and generic framework for outcome interpretation that is built upon a falsifiable hy-
potheses as the central constituent. The framework involves a machine learning model whose output yields, besides
a classification outcome, an interpretable domain which is explicitly inferred during training of the model. The un-
derlying hypothesis is formulated as a connection between the interpretable domain and the sample from which input
data to the classifier have been obtained. Since the hypothesis refers to the sample rather than the input data, specific
predictions about the sample can be derived from the hypothesis, which can thus be validated, i.e., corroborated or
falsified, by additional experiments.

We demonstrate the application of our framework in a computational pathology setting dealing with colorectal tissue
samples. Specifically, we introduce a weakly supervised deep convolutional neural network approach for classify-
ing cancer and localizing tumor in microscopic images of tissue thin sections. We primarily work on hyperspectral
infrared (IR) microscopic images which at each pixel position provide a location-specific biochemical fingerprint of
the sample with a spatial resolution of around 5µm [Kallenbach-Thieltges et al., 2013, Raulf et al., 2020]. Our com-
parative segmentation network approach (CompSegNet) is trained on sample labels only, but during training infers a
segmentation of tumor which facilitates a hypothesis-based interpretation of classification outcome.
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Falisifiable Explanations of Machine Learning Models

2 Theory and Calculations

2.1 A formal definition of model explanation

The computational approaches introduced here emerge from a formal definition of model interpretation in machine
learning that is illustrated in Figure 1. We assume a given machine learning model f that classifies input x ∈ X
derived from a specific sample as label y = f(x). In this setting, interpretation requires an extension of the machine
learning model to infer additional interpretable output, so that f(x) = (y, h) with h ∈ I . Here, I is an interpretable
space that is inductively inferred while (or subsequent to) training f . Formally, the extension is thus a mapping
f : X → Y × I , where X is the space of measured data, Y the space of supervised training labels, and I is what
will henceforth be referred to as interpretable space, or I-space for short. This allows us to define an explanation of
f(x) = (y, h) as a falsifiable hypothesis that establishes a connection between h ∈ I and the sample from which
data x have been obtained. We will refer to hypotheses satisfying this definition as falsifiable explanations of the
underlying machine learning model. The definition can be restricted further by requiring the classification y to be
obtained purely on the grounds of h ∈ I . Formally, this means that classification is performed in two steps, where first
h = f(x) and subsequently y = g(h) is computed. In this case, we refer to the space I as an intermediary I-space, and
correspondingly define a hypothesis connecting h with the original sample as a falsifiable intermediary explanation
of the classifier g ◦ f . Intermediary explanations are obviously much stronger, since the classification can be derived
from the interpretable intermediate variable, while the less restricted general falsifiable explanations allow h to be
computed fully independent from y. Also, post-hoc interpretations [Bach et al., 2015, Simonyan et al., 2013, Zhou
et al., 2016, Selvaraju et al., 2017] can be phrased in this framework. If the machine learning model is described by
M in the space of all trainable models, its output can be denoted by fM (x). The post-hoc interpretable space for input
x is then computed through a function h = g(M,x), and defining f(x) := (fM (x), g(M,x)) matches the framework
displayed in Figure 1.
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Figure 1: Framework for a formal definition of machine learning model explanation. Conventionally, supervised
training of a machine learning model f based on measurements obtained from data space X equipped with labels Y
is an inductive step. Interpretation is facilitated by extending f to infer an additional output, so that f(x) = (y, h),
where y ∈ Y is a label and h ∈ I is additionally inferred output in an interpretable space I . A falsifiable explanation
then is a hypothesis that connects h with the sample from which x originates.

There are crucial differences between falsifiable explanations and earlier attempts [Montavon et al., 2018, Murdoch
et al., 2019] to define explainability and interpretability. First and foremost, our approach refers back to the physical
reality of the sample from which the data originate rather than just referring back to the data x ∈ X . Second,
we explicitly require an explanation to be a falsifiable hypothesis. Earlier definitions of explainability commonly
involve understandability by a human expert. Our definition shifts understandability towards the hypothesis, which is
implicitly assumed to be understandable by a human expert. Compared to [Michalski, 1983], the hypothesis is phrased
ex-silico and outside the formalism of statistical learning, but within the rigor of hypothetico-deductive reasoning.
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2.2 A neural network approach facilitating falsifiable explanation.

We present the comparative segmentation network (CompSegNet) as a weakly supervised neural network that yields
an I-space through an activation map which is trained on image labels only. A preliminary version of the CompSegNet
has been described earlier [Schuhmacher et al., 2020]. Here, we extend the CompSegNet to a falsifiable explainable
model in the context of whole-slide infrared microscopic images of histopathological tissue samples. In particular, we
showcase how the CompSegNet yields an I-space and facilitates a falsifiable intermediary explanation of a classifier
that distinguishes cancer samples from cancer-free samples.
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Figure 2: Schematic overview of the Comparative Segmentation Network (CompSegNet). a The network is
trained on sample labels only, but yields a U-Net [Ronneberger et al., 2015] whose output layer as an activation
map facilitates segmentation. b The activation map is inferred with the help of a pooling neuron whose activation is
maximized for cancer samples and minimized for control samples during training.

As illustrated in Figure 2, the CompSegNet is a U-Net [Ronneberger et al., 2015] extended by a pooling neuron which
accumulates activation from the output layer of the U-Net. Applied to distinguishing cancerous samples from cancer-
free samples, the loss function aims to maximize pooled activation in images labeled as cancerous, while minimizing
pooled activation in images labeled as cancer-free. This loss function invokes an inductive bias for the U-Net to localize
structures that are present in cancer samples only. In other words, we may hypothesize that the CompSegNet localizes
tumor and associated structures. It must be emphasized that the I-space is the outcome of an inductive process and thus
formally decoupled from epistemic concepts such as tumor. The concept of tumor is unmistakably characterizable on
a molecular basis. The hypothesis connects the inductively obtained I-space with epistemic concepts from molecular
reality, thus resolving the epistemological opacity [Durán and Jongsma, 2021] of the model.

The hypothesis that activation in I-space corresponds to tumor, henceforth referred to as tumor-activation hypothesis
for short, is indeed falsifiable. In the given setting, images have been obtained from label-free infrared microscopy,
which is particularly amenable to further experimental characterization since the sample is unaltered after infrared mi-
croscopic imaging. Specifically, as a secondary validation of our hypothesis, we performed conventional hematoxylin
and eosin (H&E) staining, where tumor regions can be clearly identified and the hypothesis can thus be validated.
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2.3 Network Architecture

We formally consider a microscopic image x involving d optical channels as a mapping x : Ω × [1 : d] → R in a
coordinate system Ω with N ×N pixels. We consider conventional light microscopic H&E stained images involving
d = 3 channels and hyperspectral infrared images where each pixel is represented by a spectrum involving d = 427
wavenumbers. In a complete data set X = {(x1, y1), . . . , (xn, yn)}, each image xi is associated with a sample-level
label yi, with yi = 1 indicating a diseased sample, and yi = 0 indicating a healthy control sample. As a notational
convention, we denote the optical spectrum at position j ∈ Ω by xi(j). The goal of training our network is to infer
an activation map hi : Ω → [0, 1] that yields an I-space by localizing disease patterns in the diseased samples: If xi

is a cancer sample indicated by yi = 1, the output map hi(j) should approach 1 precisely for those positions j where
tumor or tumor-associated tissue is present, whereas at all tumor-free positions j in xi, xi(j) should approach 0. In
particular, given a healthy control image xi, all positions should receive an activation close to 0 in their activation map
hi.

Our network is essentially an extended U-Net architecture [Ronneberger et al., 2015] that receives as input an image
xi and produces the activation map hi as an I-space variable from which the output of the network function f(xi)
is computed through a pooling neuron. Beside a modified transfer function in the activation map and the extended
optical dimensionality of the input, we employed the widely established topology of the U-Net. For the conventional
H&E data, we use the U-net topology from Ronneberger et al. [2015] with an input dimensionality of 224×224×3. In
the experiments with the hyperspectral image data, the input size was adapted to 256×256 with 427 optical channels
at each pixel, while the remaining layers of the network were unchanged.

The topology, parameter space and loss function of the network are expliciteply tailored to accomodate modeling as-
sumptions that adjust the inductive bias of the training process. In particular, to accomodate the nature of histopatho-
logical imaging data, positions in the sample that are not covered by sample need to be disregarded in the loss function.
To this end, we introduce a binary background mask Mi. We indicate Mi(j) = 1 if pixel j in image i is covered by
sample, and Mi(j) = 0 otherwise. For both infrared microscopic images and H&E stained images, Mi can be com-
puted in a straightforward manner from xi. For the infrared microscopic images, a threshold is calculated based on the
histogram of the absorbance at 1656 cm−1 over the whole image using Otsu’s binarization approach with the use of a
gaussian filter of size 5. For H&E images, positions not covered by sample appear bright white and can be similarly
separated by a intensity threshold.

For the interpretation of network output, it is essential that the activation map hi(j) at each position j is bounded within
the interval [0, 1]. To achieve this, a sigmoid activation function is used for each neuron in the neural network layer
representing h. The activations of the neurons that constitute the activation map hi are each weighted by 1/M1

i , with
M1

i representing the number of foreground pixels in the background mask Mi and then accumulated in a pooling neu-
ron q; positions masked as background are associated with zero activation. A key modeling ingredient is the transfer
function σα,β for the pooling neuron q. The transfer function is used to steer the network towards identifying a certain
minimum and maximum fraction of tumor in input images labeled as cancer. At the same time, the transfer function
needs to deincentivize the overdetection of cancer. Otherwise, without limiting overdetection, the network will escape
towards the trivial solution and label each cancer sample completely as tumor. We translate these assumptions into a
piecewise linear transfer function

σα,β(x) =

{
x/α if x ≤ α

1 if α < x ≤ α+ β
(1− x)/(1− (α+ β)) if x > α+ β,

which puts a maximum incentive for the network to identify a fraction of tumor that lies in between α and α+β where
α and β are two parameters with an explicit modeling role. In our present networks, we used α = 0.05 and β = 0.9
for the infrared image based CompSegNet and α = β = 0.4 for the H&E image based CompSegNet.

Through the pooling neuron q a segmenting network becomes a binary classifier, whose classification performance
is based on the segmentation resulting from the activation layer. Thus, in case of a successful classification by the
pooling layer, the corresponding pixel-precise segmentation can be extracted.

The contribution Li of image xi to the loss function used is composed of two terms

Li = Li
class + λLi

bgr

coupled by a scaling parameter λ that was constantly set to 1 throughout all computations presented here. The first
part Li

class is a binary cross entropy with a class weighting. The class weights w− and w+ were determined by the
relative prevalence of positive and negative samples in the dataset. For an input image xi, we denote its given disease
label as yi and the output of the network after the pooling neuron as f(xi). Then, we write the class-loss as
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Li
class = −(w− · yi) · log(f(xi)) + w+ · (1− yi) · log(1− f(xi)).

Activation of pixels that are either masked out as background through the mask Mi or belong to a negative cancer-free
dataset is penalized by the term Li

bgr through

Li
bgr = − yi

M0
i

·
∑
j∈Ω

(1−Mi(j)) log(1− hi(j))

+
1− yi
|Ω|

∑
j∈Ω

log(1− hi(j)),

where M0
i denotes the number of background pixels in mask Mi. All networks were trained using a dropout rate of

20% in the hidden layers along with batch normalization and RMSprop as optimizer.

Table 1: Patient characteristics for the infrared imaging dataset from the ColoPredict Plus 2.0 multicenter
cohort. The total numbers are provided for the number of samples (N(s)), the number of measurements (N(m)) and
the number of patches (N(patch)). The data provided for the characteristics are the numbers and the percentages
corresponding to N(s). For the tumor-free samples only data about gender and age can be provided.

Training Cohort Validation Cohort Test Cohort
Tumor Tumor-free Tumor Tumor-free Tumor Tumor-free

Total Number
N(s) 50 50 25 25 25 25
N(m) 137 106 73 54 59 59
N(RoI) 650 645 318 320 240 364

Gender
female 32 (64%) 27 (54%) 15 (60%) 8 (32%) 14 (56%) 13 (52%)
male 18 (36%) 23 (46%) 10 (40%) 17 (68%) 11 (44%) 12 (48%)

Age in years
mean ± SD 77±11.9 68±10.6 76±13.2 72±9.5 73±10.4 71±10.2

UICC Stage
II 30 (60%) n.a. 15 (60%) n.a. 14 (56%) n.a.
III 20 (40%) n.a. 10 (40%) n.a. 11 (44%) n.a.

Localization
left 18 (36%) n.a. 7 (28%) n.a. 11 (44%) n.a.
right 32 (64%) n.a. 18 (72%) n.a. 14 (56%) n.a.

2.4 Activation Map Binarization

In order to binarize activation maps for computing Dice scores, we follow an approach that involves thresholds at
two different levels. The primary threshold θ constitutes the actual activation threshold to binarize the activation
map. A secondary threshold ϱ is a tumor-fraction threshold such that a sample is classified as cancer whenever
the ratio of tumor pixels exceeds ϱ after binarization using θ. Now, each combination (θ, ϱ) turns the activation
layer of a CompSegNet-trained U-Net into a classifier whose performance can be measured on the validation set by
computing the F1θ,ϱ-score. Since both θ and ϱ are [0, 1]-valued, we can determine (θopt, ϱopt) = argmaxθ,ϱ F1θ,ϱ
using exhaustive search with a step size of 0.02 for θ and a step size of 0.01 for ϱ.

3 Material and Methods

3.1 Infrared Imaging

Infrared imaging is a label-free method for obtaining robust and observer-independent classifications of tissue thin sec-
tions on microscopic spectral images. Based on the molecular fingerprint in the spectral domain, supervised learning
algorithms can be trained to identify disease-associated regions. It has been shown that this method allows a differ-
entiation of tissue types with focus on cancer tissue sections [Kuepper et al., 2018]. It also allows the biochemical
differentiation of tumor tissue in terms of cancer subtyping and grading [Großerueschkamp et al., 2015, Kuepper et al.,
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2016]. The original setup was based on Fourier transform infrared spectroscopy (FTIR), embedded in a microscope
setup. Due to long acquisition times a transition to Quantum Cascade Laser (QCL) based imaging approaches has
been made which reduced the measurement time from 90 hours for the FTIR setup to approximately one hour for an
average colon tissue thin section of 1.4 cm × 2 cm and yields high-quality spectral data [Kuepper et al., 2018]. As
a QCL based platform, the Spero QT IR microscope (Daylight Solution, San Diego, CA, USA) was utilized. The
standard configuration covers the wavelength from 1800 cm−1 to 950 cm−1 with a spectral resolution of 2 cm−1.
The installed 4 × 0.3 NA objective was used with a coverage of 2 × 2 mm Field of View (FOV). The uncooled
microbolometer focal plane array (FPA) detector consists of 480 × 480 pixels with a pixel size of 4.25 × 4.25 µm.
During the measurement the sample chamber is constantly flooded with dry air.

3.2 Patients and datasets: IR Imaging

The primary basis for our infrared microscopy based study is a collective of 100 samples of patients with colorectal
carcinoma (UICC Stage II & III, older than 18 years) and 100 samples of tumour-free tissue samples, both randomly
selected from the multicenter registry study ColoPredict Plus 2.0. The nation-wide study involves 188 clinical trial
centers and collects samples retro- and prospectively. The 100 samples per group (tumor / tumor-free) were divided
into 50% training data, 25% validation data and 25% independent test data, as shown in Table 1. The cohorts were
balanced by gender, UICC Stage and localization with the whole cohort showing a tendency for a higher proportion of
female patients, Stage II and a right-sided localization. For some samples, the data set was extended by measurements
on a second microscope of same type to include device variance in the dataset, so that in total, the study is based on
200 samples and 488 IR measurements of 190 patients. For a detailed description of the cohort refer to Kallenbach-
Thieltges et al. [Kallenbach-Thieltges et al., 2020]. The subdivision into training, validation and test group was
performed strictly at the patient level.

The samples were obtained during surgery, locally formalin-fixed and paraffin-embedded and subsequently treated
according to the standard procedure at the Institute of Pathology. Samples were cut into 7 µm thick tissue thin sections
following a previously established infrared microscopy workflow [Kuepper et al., 2018] described in Section 3.1. Sub-
sequent to infrared imaging, the tissue thin sections were stained by H&E following standard procedures in pathology.
Based on the H&E stained tissue sections, each measurement was annotated on a high-level scale by a pathologist,
marking regions slightly larger than the input patch size of the CompSegNet (≈ 1.1 mm) that contain a minimum
of 20% tumor-related tissue in the 100 tumor samples and checking the tumor-free samples. As a data augmentation
strategy, patches for training were obtained by randomly cropping patches matching the CompSegNet input size of
256×256 pixels. For further augmentation, the patches are flipped randomly after cropping.

In order to validate the tumor-activation hypothesis associated with the trained CompSegNet, three tissue sections
were H&E stained as secondary experiment. In the resulting images, tumor-associated regions were annotated by a
pathologist, yielding a binary mask with one class representing the tumor-associated tissue regions and the other class
representing all tumor-free regions which includes tissue components such as crypts, lymphoid follicles, connective
tissue, blood vessels and nerve tissue as well as muscle. The annotation of tumor-associated regions was performed
in a broad sense, including regions which may not contain tumor cells, but do not occur in tumor-free tissue sections,
which is generally referred to as stroma. This includes, for example, the extracellular matrix, immune cells, infiltrated
connective tissue and basement membranes.

3.3 Dataset: H&E Images

For further validation of the CompSegNet approach, the H&E data set from Kather et al. [2019a], Kather et al. was
utilized for training and validation as a well-established data set in computational pathology. It provides tissue samples
from the National Center for Tumor diseases (NCT, Heidelberg, Germany) tissue bank and the University Medical
Center Mannheim (UMM, Heidelberg University, Mannheim, Germany). The larger dataset provides 100,000 non-
overlapping image patches from 86 H&E stained slides scanned by a conventional whole-slide scanning microscope
and is referred to as NCT-CRC-HE-100K. Each image patch is 224×224 pixels in size at 0.5 µm per pixel and is
assigned one out of nine different classes, with two classes associated with colorectal cancer (cancer-associated stroma
and colorectal adenocarcinoma epithelium). The smaller dataset is referred to as CRC-VAL-HE-7K and consists of
7180 image patches, with the same size and resolution as the large data set.

4 Results

4.1 Training performance
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Figure 3: Training curve, evolution in I-space and ROC curves of a CompSegNet trained on infrared images of
colorectal histopathology tissue sections with patch size of 256×256 pixels. a Training progress for IR images with
overview-images: The blue and orange curve show the training and validation loss over 250 epochs. Five epochs were
chosen as examples to visually illustrate the course of training in the I-space for the validation data. The upper half of
the five overview images displays activation within the tumor-free patches and the lower half within the tumor patches.
b-c ROC curves and AUC values for validation (N(patch)=638) and test dataset (N(patch)=604) for the selected model
from epoch 244. d The table shows all statistic parameters that were used for selecting the model.

For the application of the CompSegNet to infrared data, the number of input channels was extended to 427 optical
channels. The expected tumor fraction thresholds, as described in chapter 2.3, were set to α = .05 and β = .9,
matching the expected rate of tumor content within an image patch and thus controls the inductive bias of the network
based on modeling assumptions. The dropout rate was set to 20% along with a learning rate of 5·10−4. The RMSprop
parameters were set to ρ = 10−6 with a momentum of 0. For the learning rate, a scheduler was implemented with a
decay of 0.9 every 30 epochs along with a batch size of 4.

Figure 3 a illustrates the loss for the training and validation dataset over the 250 epochs of training. The first 6 epochs
show a slowly dropping plateau phase. This is a consistent behaviour of the CompSegNet and is explicitly guided by
a background recognition term in the loss function. The length of the plateau phase is inversely proportional to the
learning rate. In addition to the loss, a visual illustration has been added for five epochs over the course of training that
shows an overview of the predictions of the validation patches in the I-space, where the evolution of the inferred I-space
can be traced over training time. The evolution of the learned I-space can also be traced visually in the Supplementary
Video. The final epoch (epoch 244) has been selected with regard to the area under receiver operating characteristic
(AUC) values for the receiver operating characteristic (ROC), the F1 score, sensitivity, specificity and accuracy on
the validation dataset. Validation on the independent test set exhibits similar performance as on the validation set as
indicated in Figure 3, indicating a stable generalization performance.

4.2 Validating the tumor-activation hypothesis

In order to validate the tumor-activation hypothesis, we applied the trained CompSegNet to a set of three whole-
slide images from the independent test set.The prediction for the whole-slides was performed by moving a 256×256
pixel window over each measurement with an overlap of 64 pixels while assigning maximum activation value in the
overlapping areas. The resulting whole-slide activation map was binarized by a global activation threshold of .628 as
described in chapter 2.4. Agreement between the resulting binarized mask and tumor annotations was measured using
Dice scores after transferring the H&E image and its annotation into the same coordinate system as the infrared image
using the registration approach from Trukhan et al. [2020]. Figure 4 a-i illustrates the results on the whole sample for
three thin tissue RoI from the test cohort. The Dice scores consistently exceed .5 indicating a good agreement between
tumor-associated regions and the inferred I-space. The I-space is consistently a subset of the annotated regions. This
may at least partially be explained by the inherent practical limitations of annotating the tumor-associated regions,
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which is complicated by the reduced H&E image quality that is inherent to the PET microscopy slides used for infrared
microscopy. For the purpose of linking back the I-space to the sample, two subregions from Figure 4 f were selected
that show examples of both agreement and disagreement between I-space activation and annotation. By looking at
the spectral property of the underlying tissue as shown in Figure 4 f (iii), a molecular interpretation becomes possible
that closes the gap between I-space, hypothesis and the biochemical properties of the sample itself. For a high-level
overview, two whole-slide H&E images are illustrated with the I-space activation in green in Figure 4 j and k, showing
one cancer and one cancer-free sample, respectively.

4.3 Tumor segmentation in conventional histopathology image data

In order to further validate the CompSegNet approach, we trained a network to segment colorectal carcinoma related
structures using the H&E data set from Kather et al. [2019b], as described in section3.3. As training data, the dataset
provides 100,000 image patches from 86 H&E stained slides. Each image patch is 224×224 pixels in size and is
assigned one out of nine different classes. In order to match the characteristics of the training data, we chose the
expected tumor fraction parameters of the loss function as α = β = .4, corresponding to an expected tumor content
of 40-80% in each patch annotated as tumor. The training data set is complemented by a validation dataset with about
7000 images with the same parameters. For independent testing, we further supplemented the data set with large
subregions of three further whole-slide images from the ColoPredict Plus 2.0 registry study summarized in Table 1.
In these three samples, tumor and associated regions were annotated as ground truth. All H&E stained images were
normalized using the approach by Macenko et al. [2009]. Note that in the setting of applying the CompSegNet to
H&E stained images, the H&E images themselves cannot be used as secondary experiment for validating the tumor
activation hypothesis. Yet, in order to measure the agreement of inferred activation with tumor-associated tissue, we
annotated tumor regions and measured the overlap with activation. Compared to the underdection observed in the
infrared-based activation maps, the H&E based activation maps displayed in Figure 6 rather display over-detection in
two out of three samples of tumor-related structure, yet with similar Dice scores. In the third sample (Figure 6 c), one
part of the tumor is not recognized, potentially due to tumor structures not represented in the training data set.

We compared the I-space based classification of the CompSegNet with LRP as a reference for post-hoc explanation
methods [Hägele et al., 2020]. Conceptually, LRP exhibits a tendency towards satisfying the tumor-activation hy-
pothesis because the relevance map is built on the invariant that accumulated relevance equals network output [Bach
et al., 2015]. However, as a post-hoc approach, LRP lacks corresponding inductive bias during training. As detailed
in Supplement A, we followed Kather et al. [2019b] and trained a ResNet-18 [He et al., 2016] on the same data as
the CompSegNet, and subsequently performed LRP on the image patches from the validation set. The ResNet ouput
was used to compute ROC curves on the validation set, which due to the relevance invariant is equivalent to a ROC
curve over accumulated pixel relevances. The ResNet-18 exhibits slightly but consistently worse performance than
the CompSegNet, indicating an effect of the inductive bias on optimizing I-space during training of the CompSegNet.
The same trend is observed on the independent test set, where the LRP based segmentation achieves an average Dice
score of .54 (Supplementary Figure 1), compared to an average of .58 obtained by the CompSegNet.

As to be expected from the use of sigmoidal as well as piecewise linear transfer functions, convergence of the
CompSegNet (Figure 5 a) is less smooth compared to the ResNet-18 (Supplementary Figure 1). With the rapid
forward-calculations of the U-Net underlying the CompSegNet, the evolution of the learned I-space can be traced
visually during training without much computational effort. For the backward propagation underlying LRP, this is
impractical due to the much higher demand in computational resources (Supplement).

5 Discussion and conclusions

We have introduced a framework for falsifiable explanations of machine learning models which establishes a hypoth-
esis rather than an expert as the major constituent of an explanation. We introduce the concept of I-space as the link
between hypothesis and machine learning model. As we demonstrate, a suitable I-space can be obtained by either
an explicit inductive bias during training or by post-hoc methods. We showcase these concepts by establishing a
tumor-activation hypothesis for deep neural networks that identify cancer in histopathological imaging data.

Several aspects need to be pointed out regarding our definition of a machine learning model explanation. First, it is
crucial that the hypothesis refers back to the original ex-silico sample rather than the already observed in-silico data
x. By referring back to the sample, the hypothesis can (and in general will) facilitate a prediction about the outcome
of a secondary type of experiment performed on the same sample, rather than a prediction about the experiment
that has been conducted to obtain x. Second, the definition introduces a new layer of validating a machine learning
model. In addition to validating at the level of training labels, the explanation of the machine learning model can be
validated by testing the stated hypothesis. In particular, the model may be invalidated by falsifying the hypothesis.
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Figure 4: Results for whole-slide segmentation on infrared measured samples from the test cohort of the Colo-
Predict Plus 2.0 study. a-c Ground truth annotation of H&E images with regard to tumor-free regions and tumor-
related regions. d-f show the annotation from a-c overlaid with the segmentation output of the CompSegNet in green.
f(i) and f(ii) show a magnification of f for two selected regions in which tumor-associated tissue was annotated, but
no activation of the network appeared. Infrared spectra are plotted for cancer segmentation areas and highlighted
non-activated areas. For interpretation of annotation and segmentation, g-h shows the matching H&E stained sections
for d-f. j-m illustrates two whole-slide H&E stained images, overlaid with the activation map (j: cancer-sample, k:
cancer-free sample) and the corresponding H&E image without segmentation overlay (l: cancer-sample, m: cancer-
free sample).
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Figure 5: Training curve and ROC curve of a CompSegNet trained on H&E stained images of colorectral
histopathology image data. a Loss during training are shown in blue and orange for training set and validation set,
respectively. b The ROC curve was obtained based on the validation set from [Kather et al., 2019a], using all 1200
tumor patches against 1200 patches randomly sampled from the remaining 8 classes as a class-balanced validation
set. A visual snapshot displaying the activation maps of a random subset of the validation data set is provided for four
epochs. The ROC curve of the CompSegNet consistently exceeds the ROC curve of predictions through a ResNet-18.

Third, the definition unifies inductive machine learning with the hypotheto-deductivism of the scientific method, since
the inductive task of supervised training is complemented by deductive reasoning: Pure supervised training merely
interpolates between data points, and the inductive bias of a machine learning method determines how to interpolate.
Our approach introduces I-space, which is also subject to interpolation, but the arbitrariness of interpolation is blocked
by a falsifiable hypothesis and predictions derived from it. In this sense, phrasing inductive bias through I-space can
be thought of and used as a modeling tool that controls how the model interpolates. The deductive ex-silico validation
level legitimates to train a model that optimizes towards certain features of I-space representations. In other words,
I-space can be used to constrain and control the inductive bias of training f .

Our definition links to existing concepts and approaches of explainable machine learning. In the taxonomy introduced
in [Guidotti et al., 2018], interpretations matching our definition are outcome explanations since they explain the
decision on a given object in contrast to model explanations which explain the internal logic of a machine learning
model independent of a specific input. In general, any of the numerous and widely used model explanation approaches
proposed in literature such as linear relevance propagation [Bach et al., 2015], saliency maps [Simonyan et al., 2013]
or class activation maps [Zhou et al., 2016, Selvaraju et al., 2017] are potential sources of an I-space. These methods
usually infer the computation of an input-specific interpretation in a post-hoc manner after a black box neural network
has been trained. While such inferred interpretations may support a hypothesis that withstands experimental validation,
post-hoc methods of output explanation do not exploit the potential to optimize I-space inference towards a specific
hypothesis by modeling inductive bias during training. It is important to notice that our CompSegNet approach yields
a readily trained U-Net, which can process input using fast parallel forward calculations. This provides a practical
and crucial advantage over most post-hoc methods, which require backpropagation steps that are more difficult to
parallelize.

Some existing machine learning models implicitly match parts of our definition of falsifiable explanations. For ex-
ample, applying multiple instance learning in histopathology [Campanella et al., 2019, Lu et al., 2021, Ilse et al.,
2018, Li et al., 2019] tiles whole-slide samples into a large number of patches, and the key task is to identify the few
disease-relevant patches among this large number. The few positive instances claim to localize disease, which yields
a basis for a falsifiable hypothesis. In other words, multiple instance learning in histopathology yields an I-space at
the level of patches. In this view of multiple instance learning, our CompSegNet approach is a weakly supervised
learning approach that provides an I-space in the same coordinate system as the input image. Both the CompSegNet
approach and the variants of multiple instance learning used in computational pathology [Campanella et al., 2019]
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Figure 6: Segmentations of H&E stained images from the fully independent ColoPredict Plus 2.0 study test
set. a-c Ground truth annotation of tumor and associated structures. Following Figure 4, annotated tumor-associated
regions are shown in purple, other tissue in blue. d-f Ground truth overlaid with binarized segmentation map (green).
g-i H&E staining images underlying the annotation and the activation map.

involve different types of target functions that are tailored towards localizing disease under certain side assumptions.
This optimization under side assumptions indeed introduces the desired inductive bias while training the models. In
more general terms, certain types of weakly supervised learning may provide a basis for falsifiable explanations.

It is noteworthy that experimental validation is an inherent part of falsifiable explanations. It facilitates formal inclusion
throughout all phases of clinical studies. This appears relevant since on the one hand, explainable models are often
considered an important corner stone for trustworthy machine learning in medical applications [Abels et al., 2019,
Kelly et al., 2019], while on the other hand no formal definition of what an explanation is has been established to
date. The question arises whether explanations that are not connected to falsifiable hypotheses can or should formally
be part of clinical studies. The necessity of interpretation has recently been argued by Durán and Jongsma [2021],
who identify epistemic opaqueness as the primary reason to distrust black box models. Since falsifiable explanations
connect domain knowledge with machine learning models within the rigor of the scientific method, our proposed
framework does establish epistemic transparency of the underlying machine learning model.

Neither the input space nor the I-space is limited in any way to image data, and the concept of falsifiable explanations
carries beyond biomedical settings. While the input space is constituted by a given experimental setup, the only
constraint on I-space is that it needs to connect to the hypothesis that constitutes the actual interpretation. It is important
to realize that the hypothesis may and in general should involve further domain knowledge about the underlying
sample. For example, the tumor-activation hypothesis involves knowledge about tumorgenesis. The same holds for the
task of designing a secondary experiment. Examining the hypothesis as in our case by performing H&E staining on the
sample involves background knowledge that tumor can be recognized by densely packed nuclei of certain morphology
in particular regions of the sample. Other experiments may be imaginable for the same hypothesis, e.g. dissecting the
areas with high activation using laser capture microdissection [Großerueschkamp et al., 2017, Selbach et al., 2021]

12

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.11.01.21265738doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.01.21265738


Falisifiable Explanations of Machine Learning Models

and subsequently performing genome sequencing on the dissected sample material. A possible prediction derivable
from the hypothesis would be to observe an accumulation of somatic mutations in the dissected areas compared to
areas with no activation in I-space. In order to obtain robust molecular characterizations from laser microdissection,
a highly precise localization of disease patterns is required. This is a major motivation behind our CompSegNet
approach to localize disease at full input resolution, rather than at tile-resolution as obtained from multiple instance
learning approaches.

When approaching more detailed and complex classification tasks, for instance the identification of cancer subtypes,
it can be expected that all essential parts of a falsifiable explanation will get more complex and involved, ranging
from the I-space to the hypothesis and the prediction. In some biomedical settings, for instance when dealing with
non-invasive radiological imaging approaches, the role of the sample is taken by the patient under examination. Here,
a hypothesis may predict the outcome of further diagnostic procedures performed on the patient.

Finally, our comparison between the weakly supervised CompSegNet approach and LRP as a post-hoc approach
demonstrates that in general both post-hoc and inductive bias based approaches are feasible approaches to infer a
relevant I-space. Although our validations are limited to two types of histopathologic imaging data, the CompSegNet
approach naturally translates to a variety of other image modalities, in particular if controlling the inductive bias
through the design of dedicated loss functions is considered as a modeling step. Conceptually, the CompSegNet
approach aims to overcome post-hoc machine learning models and takes a step towards models that are more, although
certainly far from fully, intrinsically interpretable. Combined with the concept of falsifiable explanations, the method
provides a framework for characterizing underlying or unidentified molecular changes or patterns.
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Sebastian Lapuschkin, Alexander Binder, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. The
LRP toolbox for artificial neural networks. Journal of Machine Learning Research, 17(114):1–5, 2016. URL
http://jmlr.org/papers/v17/15-618.html.
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Supplement A: Implementation and Validation of Linear Relevance Propagation

For comparison between the I-spaces induced by the CompSegNet on the one hand and linear relevance propagation
(LRP) on the other hand, we applied LRP on a convolutional neural network trained on the same data from Kather
et al. [2019a] as the CompSegNet. Following Kather et al. [2019b], we used a ResNet-18 He et al. [2016] architecture.
For the sake of comparability with the CompSegNet, the ResNet-18 was not pretrained and initialized with random
weights. The ResNet-18 was trained over 2,000 epochs on the same hardware as the CompSegNet. We implemented
LRP by modifying an existing reference implementation Li, which supplements an early version of the implemen-
tation described in Lapuschkin et al. [2016] by relevance propagation through batch normalization layers. We also
modified the relevance propagation through convolutional layers by utilizing tensorflow functionalities. Furthermore,
we simplified the LRP in the ResNet topology by not taking into account the shortcut connections He et al. [2016]
of the ResNet. The resulting relevance map of the input space of the ResNet-18 were handled in the spirit of Hägele
et al. [2020]. First, the linear gradient approximations resulting from LRP require normalization. To this end, we
determined minimum and maximum relevance across the 2,000 patches from the validation set and, following Hägele
et al. [2020], normalized to a minimum relevance of −1 and a maximum relevance of 1. The resulting three color
channels of the input space were averaged to obtain a single relevance for each pixel position. We utilized the normal-
ized LRP activation map as an intermediary I-space and determined a ROC curve over the same validation data set as
the CompSegNet. Due to the relevance invariant underlying LRP Bach et al. [2015], the ROC curve of the ResNet-18
is equivalent to determining a ROC curve over the accumulated pixel relevances.

For computing Dice scores on the independent test set, LRP relevance maps were obtained by tiling the RoIs with
overlapping patches. Subsequently, a relevance threshold was chosen to maximize the Dice score w.r.t. the manual
ground truth segmentations, yielding the segmentations and Dice scores shown in Figure 7.

Computation times for computing LRP relevance maps based on a trained ResNet-18 differ substantially from the
computation times for computing activation maps based on a trained CompSegNet. Computing the relevance propaga-
tion to obtain an LRP relevance map in practice requires more than 1.8 seconds per patch. Obtaining the CompSegNet
activation requires only the forward computation of the underlying U-Net, which in practice requires less than 0.05
seconds per patch. All practical computation times are observed on identical hardware (GPU node with four NVIDIA
V100 cards and 128 GByte of GPU memory).
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Figure 7: LRP-based segmentations of H&E stained images from the fully independent ColoPredict Plus 2.0
study test set. a-c Ground truth annotation of tumor and associated structures. Annotated tumor-associated regions
are shown in purple, other tissue in blue. d-f Ground truth overlaid with binarized LRP relevance map (green). g-i
H&E staining images underlying the annotation and the activation map.
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