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Abstract Purpose: Microsatellite instability (MSI) due to mismatch repair (MMR) defects

accounts for 15e20% of colon cancers (CC). MSI testing is currently standard of care in

CC with immunohistochemistry of the four MMR proteins representing the gold standard.

Instead, label-free quantum cascade laser (QCL) based infrared (IR) imaging combined with

artificial intelligence (AI) may classify MSI/microsatellite stability (MSS) in unstained tissue

sections user-independently and tissue preserving.

Methods: Paraffin-embedded unstained tissue sections of early CC from patients participating

in the multicentre AIO ColoPredict Plus (CPP) 2.0 registry were analysed after dividing into

three groups (training, test, and validation). IR images of tissue sections using QCL-IR micro-

scopes were classified by AI (convolutional neural networks [CNN]) using a two-step
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approach. The first CNN (modified U-Net) detected areas of cancer while the second CNN

(VGG-Net) classified MSI/MSS. End-points were area under receiver operating characteristic

(AUROC) and area under precision recall curve (AUPRC).

Results: The cancer detection in the first step was based on 629 patients (train n Z 273, test

n Z 138, and validation n Z 218). Resulting classification AUROC was 1.0 for the validation

dataset. The second step classifying MSI/MSS was performed on 547 patients (train n Z 331,

test n Z 69, and validation n Z 147) reaching AUROC and AUPRC of 0.9 and 0.74, respec-

tively, for the validation cohort.

Conclusion: Our novel label-free digital pathology approach accurately and rapidly classifies

MSI vs. MSS. The tissue sections analysed were not processed leaving the sample unmodified

for subsequent analyses. Our approach demonstrates an AI-based decision support tool poten-

tially driving improved patient stratification and precision oncology in the future.

ª 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Microsatellite instability (MSI) is a distinct genomic

feature caused by a defective mismatch repair system

(dMMR) present in multiple cancers. It occurs in

approximately 15% of colorectal cancer (CRC) cases [1].

MSI is stage-dependent, with over 20% detected in stage

II and less than 5% in advanced CRC (aCRC), referring
to stage IV metastatic CRC. MSI tumours are charac-

terised by poor differentiation, mucinous component,

proximal location, female, and older age [2]. MSI tu-

mours also occur in younger patients with Lynch syn-

drome, the most common form of hereditary colon

cancer (CC) [1]. MSI tumours are associated with a high

tumour mutational burden deriving from the MSI-

driven oncogenic pathway, (over-)expressing highly
immunogenic neoantigens, and immune checkpoints.

MSI has long been established as a positive prognostic

parameter in stage II CRC and has now become an

important predictive marker for the efficacy of immune

checkpoint inhibition in multiple cancer types including

CRC [3,4], setting the new standard of care in this mo-

lecular patient subgroup. Immune checkpoint inhibitors

are currently also being evaluated in randomised
controlled trials in localised CRC both in adjuvant and

neoadjuvant settings [1]. Testing of MSI is therefore

recommended in CRC of all stages [5].

Two standard reference methods, immunohisto-

chemistry (IHC) and fragment length analysis by poly-

merase chain reaction (PCR), are used to screen for

MSI. IHC analysis of the MMR proteins MLH1,

MSH2, MSH6, and PMS2 is the gold standard in clin-
ical routine [6]. Next-generation sequencing is an alter-

native test for MSI with approval by the Federal Drug

Administration for MSI determination in aCRC.

Considering its crucial positive predictive value for

checkpoint inhibitor therapy, misdiagnosis of MSI,

which has been reported in up to 10% for IHC,
may result in substantial disadvantages for the individ-
ual patient [7]. Furthermore, immunohistochemical

staining leaves tissue unusable for further molecular

analysis.

With the advances in computing power and the

possibility of utilising big data, artificial intelligence

(AI)-assisted digital pathology has gained significant

attraction [8e11]. MSI was detected from haematox-

ylineeosin (H&E)-stained sections applying a deep
learning approach requiring very large patient cohorts

for training, showing impressive validation [12]. How-

ever, all methods for MSI detection so far depend on

variously modified tissue e rendering the sample inac-

cessible for further molecular characterisation.

Infrared (IR) imaging is an emerging label-free

technology for unstained tissue sections. A quantum

cascade laser (QCL) based IR microscope records
spatially resolved infrared spectra providing 427

molecular-specific channels. Previously, precise,

operator-independent identification of cancer, subtypes,

grading, and molecular alterations in unstained tissue

sections has been reported [13e15]. Feasibility of IR-

based MSI detection using a machine learning

approach has previously been demonstrated by our

group using a random forest classifier trained on 40
patients and tested on 60 patients [16]. Although a very

good area under receiver operating characteristic curve

(AUROC) could be achieved on the small collective, an

internal validation on a larger cohort from the multi-

centre AIO (Arbeitsgemeinschaft internistische Onkolo-

gie) ColoPredict Plus (CPP) 2.0 registry showed that

the robustness and generalisability was not given. To

overcome these limitations, the presented study aimed
to test and validate an IR imaging AI-based approach

to classify MSI vs. microsatellite stability (MSS) in

early CC tissue samples from the AIO CPP 2.0 registry.

This approach now allows us for the first time a robust

detection of MSI in CC by IR imaging.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Material and methods

2.1. Patients

The multicentre AIO CPP 2.0 registry trial

(DRKS00004305) captures clinical data and tissue

samples of patients with early CC in 188 trial centres

throughout Germany [17]. All study participants pro-

vided informed consent, and the study protocol was
approved by the institutional review board (IRB) of the

Ruhr-University Bochum (registration number: 4453-12

& 20-6830) and by local IRBs of participating sites. The

sample study is based on feasibility studies conducted

with IR imaging and a statistical evaluation for the ex-

pected length of the 95% confidence interval (CI) for the

sensitivity and specificity using the AgrestieCoull

method [16,18]. The study design and report of results
followed the STAndards for Reporting Diagnostic ac-

curacy studies (STARD) guidelines as described in

Supplementary Table 1.

According to the study protocol, prerequisites for the

selection of patients were age above 18, CC stage I, II,

and III, written consent, and known microsatellite sta-

tus. All samples are surgical specimens, and MSI status

was assessed centrally using immunohistochemistry in
combination with PCR-based fragment length analysis

as described recently [19]. The selection aimed to bal-

ance parameters of age, sex, localisation, BRAF, and

RAS mutational status. Randomly assigned training

(optimisation of the neural network) and testing (model

selection) samples were chosen with a greater proportion

of MSI cases to stabilise the training process with a

more balanced dataset. Samples for the validation
cohort were randomly selected and therefore show a

natural occurrence of MSI cases. The full study flow-

chart is illustrated in Supplementary Figure 1.

2.2. Sample processing

Tissue samples were submitted from participating sites

and collaborating institutes of pathology as formalin-

fixed, paraffin-embedded (FFPE) samples and therefore

passed through different, locally established, pre-

analytic procedures. For IR imaging measurements

using the QCL-based IR microscope, 7 mm tissue sec-

tions were mounted on IR-suitable polyethylene
terephthalate frame slides and measured as described

previously [20]. Subsequently, samples were H&E

stained and digitised using an Olympus slide scanner

(Olympus VS120).

2.3. Infrared imaging

The QCL-based microscope was used in the standard

transmission configuration (Supplementary Figure 2)

[15]. The light sources are QCLs implemented in the
platform Spero QT (Daylight Solutions, San Diego, CA,

USA). This QCL platform analyses tissue sections within

30 min including AI-based classification. Detailed mea-

surement parameters are provided in Supplementary

Table 2, and study workflow is illustrated in

Supplementary Figure 3.

2.4. Deep learning algorithms

For classification of the IR images, we used convolu-

tional neural networks (CNN) in a two-step setup:

during step 1, cancer areas were detected within the IR

images, while in step 2, MSI/MSS was classified within

the detected tumour tissue (Fig. 1).
The step 1 CNN is an in-house developed weakly

supervised extension of a U-net architecture, named

comparative segmentation network (CompSegNet)

[20,21], resulting in pixel-precise cancer detection. The

CompSegNet was trained using subregions from the

whole slide IR images that were assigned by an experi-

enced pathologist (A.T.). The CompSegNet training was

conducted on these manually selected and binary
labelled subregions of size 256�256 pixels (px) (Sup-

plementary Info 1). Each region that was labelled as

cancer contained a minimum area of 20% cancer. Can-

cer areas identified in step 1 were then used for the step 2

CNN e a VGG classification network (see Fig. 1) e for

the training of the MSI/MSS classifier [22]. The tech-

nical parameters for the deep learning workflow are

presented in Supplementary Table 3. For the application
of the CNNs on whole slide IR images, the detection/

classification was performed for each subregion in the

whole slide IR image and merged for a whole slide

result.

2.5. Statistical analysis

The statistical evaluation was carried out in two levels:

on the single input subregions and on the result for the

whole slides (averaged for all subregions) on patient

level. The subregion-based evaluation serves as assess-

ment of the technical AI approach, whereas the whole

slide evaluation reflects the performance relevant for

clinical application (details in Supplementary Info 2).
The performance of the classification process was

evaluated using AUROC and area under precision recall

curve (AUPRC) defining MSI samples as positive and

MSS samples as negative. Here, 95% robust pointwise

CI for AUROC and AUPRC were generated by boot-

strapping. In addition, sensitivity, specificity, accuracy,

and F1 score (definition in Supplementary Info 4) were

determined by selecting a cut-off value for the prediction
(range: 0 to 1) balancing sensitivity and specificity on the

test cohort. Additionally, dice score was determined for

step 1 cancer detection using 25 randomly selected

samples from the validation cohort.



Fig. 1. The rapid and fully automated two-step approach for MSI/MSS classification via IR imaging. The first step uses a U-net based

architecture (CompSegNet) as a weakly supervised approach for the cancer detection. The input is manually selected subregions of size

256�256 pixels, here shown in orange (cancer) and blue (non-cancer), with 427 optical IR channels. The output detection is further used

for the selection of cancer enriched subregions as input for the VGG 11 Neural Network, which performs the MSI/MSS classification. (IR:

infrared; MSI: microsatellite instability; MSS: microsatellite stability). (For interpretation of the references to colour in this figure legend,

the reader is referred to the Web version of this article).
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3. Results

3.1. Patients

As shown, 633 patients were selected from the AIO CPP

2.0. Four samples were excluded before the analysis after
quality check of the IR measurements. The step 1 cancer

detection cohort therefore consisted of 629 patients as

shown in Supplementary Table 4. A total of 10,942

subregions were selected manually from the IR mea-

surements (training: 4955 e test: 2348e validation: 3639)

representing cancer and cancer-free regions and used for

training, model selection, and statistical evaluation.

The step 2 MSI/MSS classifier sub-cohort included
547 patients (patients with tissue sections containing

cancerous regions from the abovementioned cohort) as

presented in Table 1 and Supplementary Figure 1. Pa-

tients with only normal tissue sections (n Z 80) or

samples with insufficient cancer material for further

analysis (n Z 2) were excluded. The characteristics are

equally distributed except MSI for methodological rea-

sons (see Material and methods section).
3.2. Label-free cancer detection

The step 1 CNN achieved an AUROC of 1.0 (95% CI

1.000) for whole slide classification, thus, forming the

basis for the MSI/MSS classifier. [20] All parameters

(AUROC, AUPRC, F1 score, sensitivity, specificity,

and accuracy) achieved a value of 1.0 on the whole slide

level for cancer classification (see Fig. 2A and B), and
the cancer detector reaches a dice score of 0.5. As shown

in Fig. 2, the detection of cancer and cancer-associated

tissue performs very precisely. Whole slide images

illustrating the step 1 cancer detection are shown in

Fig. 2C with pixel-precise detection illustrated in green.

A cancer-free sample (NT Z no tumour) is shown for

comparison.

3.3. MSI/MSS classification

The step 2 MSI/MSS classifier was trained on cancer

subregions detected by step 1.1500 epochs (training

curves in Supplementary Figure 4) were trained, creating

an equal number of classifier models. The best



Table 1
Patient cohort for MSI/MSS classification.

Total Training Test Validation

MSI þ MSS MSI MSS MSI MSS MSI MSS

N (% of train/test/vali)a 547 142 (43) 189 (57) 30 (43) 39 (57) 26 (18) 121 (82)

Sex f/m in %b 50/50 64/36 40/60 67/33 31/69 65/35 50/50

Age Mean � SD (years) 69 ± 12 71 � 14 68 � 12 73 � 12 70 � 11 73 � 10 66 � 12

Location left (%b) 211 (39) 30 (21) 98 (52) 6 (20) 21 (54) 3 (12) 53 (44)

Right (%b) 331 (61) 112 (79) 90 (48) 24 (80) 18 (46) 23 (88) 64 (53)

overlap (%b) 5 (1) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 4 (3)

UICC I (%b) 13 (2) 9 (6) 1 (0) 2 (6) 0 (0) 1 (4) 0 (0)

II (%b) 152 (28) 64 (45) 37 (20) 14 (47) 8 (20) 16 (61) 13 (11)

III (%b) 382 (70) 69 (49) 151 (80) 14 (47) 31 (80) 9 (35) 108 (89)

Grading G1 (%b) 21 (4) 8 (6) 3 (2) 2 (7) 1 (3) 3 (11) 4 (3)

G2 (%b) 343 (63) 59 (42) 144 (76) 11 (37) 27 (69) 13 (50) 89 (74)

G3 (%b) 160 (29) 67 (47) 36 (19) 16 (53) 6 (15) 9 (35) 26 (21)

G4 (%b) 2 (0) 2 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

unknown (%b) 21 (4) 6 (4) 6 (3) 1 (3) 5 (13) 1 (4) 2 (2)

KRAS wt (%b) 372 (68) 119 (84) 113 (60) 24 (80) 24 (62) 16 (62) 76 (63)

mt (%b) 175 (32) 23 (16) 76 (40) 6 (20) 15 (38) 10 (38) 45 (37)

BRAF wt (%b) 423 (77) 72 (51) 171 (90) 17 (57) 36 (92) 15 (58) 112 (93)

mt (%b) 124 (23) 70 (49) 18 (10) 13 (43) 3 (8) 11 (42) 9 (7)

NRAS wt (%b) 534 (98) 139 (98) 182 (96) 29 (97) 39 (100) 26 (100) 119 (98)

mt (%b) 13 (2) 3 (2) 7 (4) 1 (3) 0 (0) 0 (0) 2 (2)

MSI, microsatellite instability; MSS, microsatellite stability; SD, standard deviation. The numbers for the total cohort are printed in bold.
a Percentage calculated for training (train)/test/validation (vali) cohorts.
b Percentage calculated column-wise and are printed in italics.
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performing model from epoch 1000 was selected based

on the AUROC value of the test set. Fig. 3 summarises

the statistical results and illustrates the application on
whole slide images. The subregion-based evaluation

performance was comparable to the whole slide evalu-

ation, with AUROC values of 0.87 (95% CI 0.78e0.97)

and 0.90 (95% CI 0.83e0.97) and AUPRC values of 0.89

(95% CI 0.80e0.98) and 0.74 (95% CI 0.59e0.89) ob-

tained for test and validation, respectively, in the whole

slide setting. Classification on the validation cohort had

85% sensitivity and 84% specificity. ROC curves, PR
curves, and statistical parameters characterising the

three cohorts are provided in Supplementary Figure 5

and 6, including a detailed analysis of the 95% CI.

Steps 1 and 2 are summarised in Fig. 3C illustrating the

process of cancer detection and subsequent MSI/MSS

classification within the cancer regions. For the whole

slide results of step 2, green represents high predictive

values for MSI, whereas purple represents high predic-
tive values for MSS.

4. Discussion

At present, two standard reference methods, IHC and

PCR, are recommended for the detection of MSI in

CRC. IHC is considered the gold standard in routine

practice followed by other molecular approaches such as
PCR when IHC is equivocal. Next-generation

sequencing has been reported to exhibit high concor-

dance with IHC and PCR and has recently been

approved by the Federal Drug Administration in
aCRC [24]. All techniques listed above use formalin-

fixed and stained tumour tissue, thereby limiting its

availability for further tissue-based analyses. MSI has
long been known as a positive prognostic marker in

early CRC. Most guidelines now recommend testing for

MSI in patients with low-risk stage II cancer to avoid

the use of ineffective fluoropyrimidines as adjuvant

treatment in this setting [5,30]. Recently, MSI has

emerged as a crucial predictive biomarker for the effi-

cacy of immune checkpoint inhibition (e.g. pem-

brolizumab) which is now regarded standard of care in
MSI aCRC and is also evaluated in early CRC in clin-

ical trials [3]. The diagnosis of MSI must therefore be

highly reliable. Presently, misdiagnosis by IHC has been

reported to be as high as 10% resulting in a substantial

disadvantage for the individual patient [7]. With the

rapid IR imaging technique (30 min turn-around time),

we were able to reliably distinguish MSI from MSS in

the tissue of patients with early CC achieving high
sensitivity and specificity, comparable to the present

gold standard (IHC) [7,25]. With this novel technique

tissue samples are kept available for further molecular

assessment.

We developed and validated a novel automated and

label-free digital pathology approach to distinguish MSI

from MSS reliably and rapidly in CC tissue samples.

FFPE samples from a total of 547 patients from the
German AIO CPP registry trial were analysed with

centrally determined MSI/MSS status. These tissue

samples were initially processed by local standards at

different institutes of pathology by investigators, thus



Fig. 2. Results for the step 1 cancer detection. (A) Illustrates the patient cohort and the distribution between training, test, and validation

sets. The table in (B) lists the determined statistical parameters for the test and validation cohort, both for the analysis with the predictions

on the pre-selected subregions and the whole slide images. Below each column the corresponding ROC curves are shown. (C) Shows the

results of the whole slide prediction for three examples from the validation cohort: the upper two examples show cancer sections (T) with

the corresponding IR overview image and the H&E image, and the NT labelled image shows a non-tumour (NT) section. The H&E images

have been registered onto the IR images according to [23] (IR: infrared).

K. Gerwert et al. / European Journal of Cancer 182 (2023) 122e131 127
increasing variation in the dataset and therefore adding

to the robustness of the method. This includes slight

variations in the thickness of the tissue sections, which
did not affect the classification results. In the first step,

the approach was able to classify cancer with an

AUROC of 1.0 (95% CI 1.00e1.00) and a dice score of

0.5 in the validation cohort of 218 patients. MSI vs.
MSS could be correctly classified with an AUROC value

of 0.9 (95% CI 0.83e0.97) and an AUPRC value of 0.74

(95% CI 0.59e0.89) in a validation cohort of 147 pa-
tients. The AUROC in the validation cohort increased

compared to the test cohort, which may be due to a

limited number of MSI cases in the validation cohort

following the natural occurrence of MSI. Overall, the



Fig. 3. Results for the step 2 MSI/MSS classification. (A) Illustrates the patient cohort and the distribution between training, test, and

validation cohort [))including overlap, ))including 2% with stage I, )))including 4% G1, ))))including two patients with G4, rest

unknown]. The table in (B) lists the statistical parameters for the test and validation cohort, together with the ROC curves for the test and

validation cohort on patient-level. Samples with predictive vales above the cut-off of 0.48 (subregion-based) and 0.39 (whole slide) were

evaluated as MSI cases. Two examples for a whole slide classification from the validation cohort are shown in (C): The classification

process is presented from top to bottom and starts with the cancer detection (light green) by a moving window (raster). The cancer

subregions are selected and used as input for the MSI/MSS classifier. For the final classification, green areas indicate a strong predictive

correlation to MSS whereas pink areas indicate a strong predictive correlation to MSI. As comparison, the H&E image is presented

additionally at the bottom. (IR: infrared; MSI: microsatellite instability; MSS: microsatellite stability). (For interpretation of the refer-

ences to colour in this figure legend, the reader is referred to the Web version of this article).
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modified architecture of the VGG network exhibited a
stable training behaviour. Our approach could thus also

be reliably used in a multicentre setting and has the

potential to be transferred to institutions and caregivers

globally in the future.
The label-free digital pathology approach described
here can detect MSI vs. MSS with sensitivity and spec-

ificity comparable to the approach, which has been

previously described on H&E-stained images [12,26,27].

Compared to the results from Yamashita et al., the
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label-free approach achieves similar accuracy without

the need for staining or other processing of the sample.

The H&E-based approaches by Echle et al. showed best

results on a 5500-patient cohort with an AUROC of

0.92. In their study, training sets consisting of 500 pa-

tients reached an average AUROC of only 0.82. The

label-free approach described here achieved an AUROC

of 0.9 (95% CI 0.83e0.97) on an even smaller 331-
patient training dataset, emphasising the information

density that IR imaging can retrieve in unstained sam-

ples. This is an advantage of IR imaging regarding

smaller molecular or clinical subgroups as well as

potentially detecting novel predictive biomarkers, e.g.,

from randomised trials with limited numbers of

participants.

This label-free approach enables the detection of
areas of interest in unstained tumour material, making,

beyond the immediate clinical application, tumour het-

erogeneity analysis, elucidation of underlying pathways,

and provision of enriched material for multi-omics ap-

proaches possible [13,28,29]. In contrast to other stain-

based methods, the label-free IR approach allows

pixel-precise dissection on the same sample slide the

detection has been performed on.
The determination of MSI is also clinically relevant in

multiple other solid tumours such as gastric or endo-

metrial cancer. Various other molecular alterations are

of impact on clinical management (RAS, BRAF,

HER2), which have different prevalence in MSI vs. MSS

cancers. Therefore, this reliable MSI/MSS classification

method may also serve as a screening method to identify

patients for subsequent molecular analyses.
5. Conclusion

This label-free digital pathology approach for MSI/

MSS classification is a novel and valid tool for stratifi-

cation in precision oncology. The analysis of unstained
tissue sections moreover allows targeted, subsequent

molecular analysis on microdissectable, predefined areas

of interest. Overall, this method has the potential to

become an applicable and valuable diagnostic tool for

stratification beyond the scope of known biomarkers for

tumour-agnostic assessments.
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frühen Kolonkarzinomen: real-world Daten des molekularen Reg-

isters der AIO Colopredict Plus. Z Gastroenterol 2020;58:533e41.

[18] Agresti A, Coull BA. Approximate is better than “exact” for in-

terval estimation of binomial proportions. Am Statistician 1998;

52:119e26.

[19] Noepel-Duennebacke S, Juette H, Schulmann K, et al. Micro-

satellite instability (MSI-H) is associated with a high immuno-

score but not with PD-L1 expression or increased survival in

patients (pts.) with metastatic colorectal cancer (mCRC) treated

with oxaliplatin (ox) and fluoropyrimidine (FP) with and without

bevacizumab (bev): a pooled analysis of the AIO KRK 0207 and

RO91 trials. J Cancer Res Clin Oncol 2021;147:3063e72.

[20] Schuhmacher D, Schörner S, Küpper C, et al. A framework for
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