

## Review

Carsten Kötting\*, Till Rudack and Klaus Gerwert

# Mechanistic insights into Ras-catalyzed GTP hydrolysis: conformational dynamics, catalytic mechanisms, and emerging therapeutic strategies

<https://doi.org/10.1515/hsz-2025-0227>Received November 3, 2025; accepted December 2, 2025;  
published online December 22, 2025

**Abstract:** Ras is a key regulator of signal transduction in cells. Ras malfunction is associated with a huge variety of oncological diseases. It is turned off by hydrolysis of bound GTP, which is accelerated by GTPase-activating proteins (GAPs). This minireview discusses the mechanism of Ras-catalyzed GTP hydrolysis, focusing on conformational dynamics and catalytic mechanisms. We discuss structural changes and the role of key residues such as Thr35, Gly60, Tyr32, Gln61, Gly12, and Gly13. Biophysical techniques such as X-ray crystallography, time-resolved FTIR spectroscopy, and hybrid quantum mechanics/molecular mechanics calculations have revealed the detailed reaction mechanisms, including the entry of the arginine finger and the rate-limiting step of inorganic phosphate release. Recent studies on the hydrolysis mechanism favor a solvent-assisted pathway. In addition, we summarize recent advances in Ras-targeting drugs.

**Keywords:** GTPase; Ras; FTIR-spectroscopy; X-ray crystallography; QM/MM calculations

**\*Corresponding author:** Carsten Kötting, Center for Protein Diagnostics (PRODI), Biospectroscopy, Ruhr University Bochum, Bochum, Germany; and Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany, E-mail: carsten.koetting@rub.de. <https://orcid.org/0000-0002-3599-9657>

**Till Rudack**, Structural Bioinformatics Group, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany; Structural Bioinformatics Group, Regensburg Center for Ultrafast Nanoscopy, University of Regensburg, Regensburg, Germany; and Biomolecular Simulations and Theoretical Biophysics Group, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany, E-mail: till.rudack@ur.de. <https://orcid.org/0000-0003-2693-9561>

**Klaus Gerwert**, Center for Protein Diagnostics (PRODI), Biospectroscopy, Ruhr University Bochum, Bochum, Germany; and Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany, E-mail: klaus.gerwert@rub.de. <https://orcid.org/0000-0001-8759-5964>

## 1 Introduction

GTPases function as molecular switches, regulating diverse cellular processes (Brunsved et al. 2006; Cherfils and Zeghouf 2013). Their signaling state is determined by surface modifications induced by the  $\gamma$ -phosphate group of GTP (Gasper and Wittinghofer 2019). All GTPases share a conserved G-domain comprising five  $\alpha$ -helices and a six-stranded  $\beta$ -sheet, and are classified into heterotrimeric (Sprang 2016), small (Mishra and Lambright 2016), dynamin (Daumke and Praefcke 2016), and translational GTPase families (Maracci and Rodnina 2016). Small GTPases are further divided into Ras (cell growth), Rho (cytoskeletal regulation), Rab and Arf (vesicular transport), and Ran (nuclear transport) subfamilies (Mishra and Lambright 2016; Yin et al. 2023).

Here we will concentrate on Ras, a key regulator in signal transduction (Cox and Der 2010; Simanshu et al. 2017; Wittinghofer and Vetter 2011), and how the GTPase reaction is catalyzed by Ras and the Ras-GAP complex. We discuss conformational changes during hydrolysis, the exact molecular mechanism of GTP hydrolysis and its kinetics obtained by X-ray crystallography, time-resolved Fourier transformed infrared (FTIR) spectroscopy, quantum mechanics/molecular mechanics (QM/MM) calculations and other methods. Finally, we will give a short overview about recent advances of drugs directly interfering with Ras.

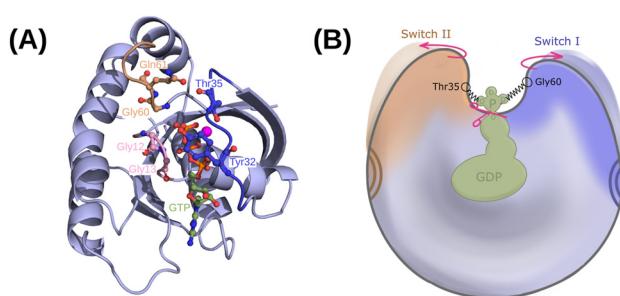
Ras is activated by its guanine nucleotide exchange factor (GEF) SOS, which promotes GDP release and GTP binding by reducing Ras's affinity for nucleotide and  $Mg^{2+}$  (Bos et al. 2007). In its GTP-bound state, Ras interacts with effectors, primarily activating the MAPK pathway. GTP hydrolysis, accelerated by GAPs, returns Ras to its inactive GDP-bound form, thus regulating signal transduction. GTP hydrolysis, which terminates signaling, is slow in solution ( $t_{1/2} \approx 200$  days at 25 °C) but is accelerated by GTPases (e.g., Ras,  $t_{1/2} \approx 20$  min) (Kötting and Gerwert 2004). GTPase-activating proteins (GAPs) further enhance hydrolysis (e.g., GAP-Ras,  $t_{1/2} \approx 50$  ms) (Kötting et al. 2008).

## 2 The structure of Ras and the role of selected amino acids

From a structural point of view, four regions are most prominent within Ras (Figure 1A): the P-loop (residues 10–17) (Saraste et al. 1990); the two switch regions (residues 30–47 and 60–76, respectively) (Wittinghofer and Nassar 1996) and the hypervariable region (HVR, residues 167-terminus) (García-España and Philips 2023). While the G domain (residues 1–166) is almost conserved within the Ras isoforms, the HVR differs. This leads to different post-translational modifications. For example, H-Ras has one farnesyl and two palmitoyl groups, N-Ras has one farnesyl and one palmitoyl group, and K-Ras 4B has a polybasic domain and one farnesyl group. These differences lead to different membrane targeting. Many studies originally done with H-Ras are repeated with the biomedically most relevant K-Ras leading to very similar results. However, the frequency of the oncogenic mutations are different among the isoforms (Johnson et al. 2017) and some manuscripts discuss differences due to allosteric interactions (Volmar et al. 2022).

### 2.1 The role of Thr35 and Gly60

Below we will discuss the key residues within the G domain. The switch mechanism was named “loaded spring mechanism” by Fred Wittinghofer (Vetter and Wittinghofer 2001). The springs are the interactions of Thr35 and Gly60 with the gamma phosphate (Figure 1B). Consequently, these interactions are lost after the cleavage of the  $\gamma$ -phosphate in the hydrolysis reaction and in the absence of these


interactions (Patel et al. 2023) the switch regions reach its less ordered “off” state. Only in the “on” state downstream effectors can bind to the fixed conformation of switch I (Spoerner et al. 2001). Many mutants shift the equilibrium from the “on” state (also called state 2 in the literature) to the “off” state (also called state 1 in the literature), e.g. G12V, Y32F, Y32W, Y32R, P34R, T35S, T35A, D38A, D38E, Y40C, A59T (Kötting et al. 2007; Spoerner et al. 2004). Transitions between these two states have been thoroughly studied by theoretical methods (Hu et al. 2024; Matsunaga et al. 2017).

### 2.2 The role of Tyr32

Tyr32 is a prominent residue within switch I that has been extensively discussed in the literature. Some literature describes Tyr32 as an important residue for hydrolysis (Fink et al. 2024) in accordance with time-resolved crystallography indicating that Tyr32 orientation towards  $\gamma$ -phosphate is a step preceding intrinsic hydrolysis (Lin et al. 2025). However, the intrinsic hydrolysis rate of Ras Y32A is similar to wild type (Rudack et al. 2015) and  $\gamma$ -phosphate bond breaking in the GAP catalyzed reaction is even faster for Y32A compared to wild type (Li et al. 2018), ruling out a direct mechanistic role during hydrolysis. Interestingly a tyrosine in the same position has an anticatalytic function in other GTPases such as RheB (Mazhab-Jafari et al. 2012) and Ran (Brucker et al. 2010). In Ran but not in Ras, the tyrosine occupies the optimal position of the nucleophilic water molecule (Rudack et al. 2015).

### 2.3 The role of Gln61

Gln61 is one of the most important residues for hydrolysis, and mutations of this residue are frequently associated with cancer. Its role is usually described as the positioning of the nucleophilic water molecule (Pai et al. 1990). Some theoretical investigations even found an imine isomerization within its side chain as an important chemical step within the mechanism (Polyakov and Nemukhin 2023) (see below).



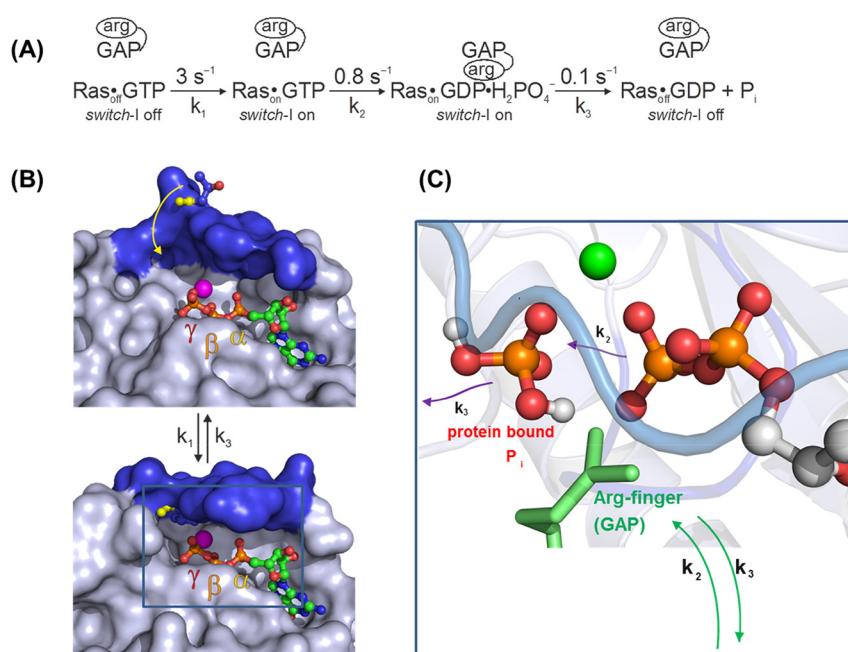
**Figure 1:** The Ras protein structure and its changes during the hydrolysis reaction. (A) 100K X-ray crystallography structure of Ras with bound GTP (PDB-ID 1QRA) (Scheidig et al. 1999) highlighting switch I (orange), switch II (blue) and P-Loop (pink) including all key residues discussed in this publication (balls and sticks representation). (B) Only the switch I and II regions change their conformation during the hydrolysis reaction due to the cleavage of the  $\gamma$ -phosphate group and their tight interactions with this group.

### 2.4 The role of Gly12 and Gly13

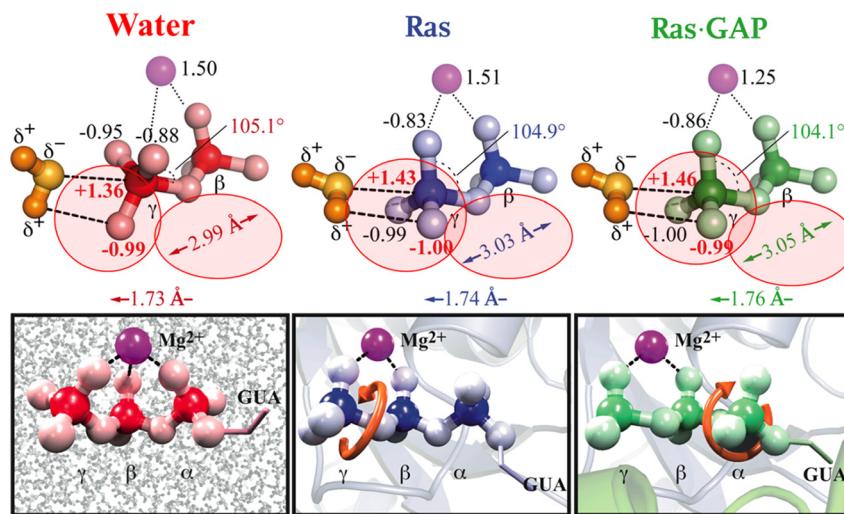
Two other prominent oncogenic mutants are Gly12 and Gly13. As the reason for oncogenicity steric hindrance is usually given, as any mutant has a larger side chain compared to glycine (Krengel et al. 1990). However, biophysical data shows very similar ground state characteristics and the

main reason is probably an influence on the difficult to measure transition state (Scheffzek et al. 1997).

### 3 GTP hydrolysis by Ras


GTP hydrolysis is intrinsically slow due to a high-energy transition state, requiring an in-line nucleophilic attack by water on the phosphorous atom of  $\gamma$ -GTP, that is shielded by negatively charged oxygen atoms. The GTPase active site contains specific amino acids that stabilize charges, coordinate  $Mg^{2+}$  between  $\beta$ - and  $\gamma$ -GTP and position the attacking water molecule. Notably, a P-loop lysine and the arginine “finger” alter  $\beta$ - and  $\gamma$ -GTP charge distribution (Gasper and Wittinghofer 2019).

Time-resolved FTIR spectroscopy and X-ray crystallography have revealed Ras and Ras-GAP complex reaction mechanisms (Kötting et al. 2008; Pai et al. 1990; Scheffzek et al. 1997). During GTP hydrolysis, three rate constants were identified in the Ras-GAP complex via time-resolved FTIR difference spectroscopy (Figure 2). Difference spectra between the initial GTP state and reaction intermediates were calculated to isolate signals from specific protein and substrate groups in the active site, effectively removing background absorbance from non-contributing protein regions and solvent.


In FTIR experiments, Ras is loaded with caged GTP (cgGTP), which is photolyzed by a brief laser flash to initiate the GTPase reaction synchronously (Kötting et al. 2007). The initial conformational switch from “off” to “on” is detected

by changes in the switch-I marker band (rate constant  $k_1$ ). Subsequently, the arginine finger enters the catalytic site ( $k_2$ ), facilitating GTP hydrolysis and formation of protein-bound  $H_2PO_4^-$  (Kötting et al. 2006, 2008). In the final step ( $k_3$ ), inorganic phosphate is released, switch-I reverts to the “off” state, and the arginine finger exits the binding pocket. These findings demonstrated that, unlike with transition state analogs, the arginine finger is not located within the GTP binding pocket in the ground state (Scheffzek et al. 1997), confirming X-ray structural models of Rho-RhoGAP complexes (Rittinger et al. 1997). The entry of the arginine finger ( $k_2$ ) directly precedes bond cleavage, and  $P_i$  release is the rate-limiting step in Ras-catalyzed GTP hydrolysis.

Integration of FTIR data with QM/MM simulations has elucidated the structural and electronic properties of Ras-bound GTP (Rudack et al. 2012a). The close agreement between experimental and simulated IR spectra at the catalytic center validates the simulation approach (Rudack et al. 2012b), enabling detailed mechanistic insights. Comparison of GTP in solution, Ras-bound, and Ras-GAP-bound states reveals that protein binding induces key changes in GTP, including a shift in charge distribution – specifically, increased positive charge on the  $\gamma$ -phosphorus – and an increased  $\beta$ - $\gamma$  phosphorus distance (Figure 3). The phosphate groups adopt an eclipsed conformation, introducing strain and driving GTP toward the transition state. These protein-induced alterations lower the activation barrier for hydrolysis, with the intrinsic binding energy of GTP compensating for the energetic cost of these conformational changes (Kötting and Gerwert 2004; Kötting et al. 2008). The



**Figure 2:** Kinetics of the Ras-Ras-GAP GTPase reaction. (A) Three apparent rate constants describe the reaction mechanism:  $k_1$  describes the shift to the “on” conformation,  $k_2$  describes the movement of the Arg-finger with immediate hydrolysis of GTP, and  $k_3$  describes the release of  $P_i$  into the bulk solvent. (B) Structural changes of Ras within  $k_1$ , illustrating how the switch-I (dark blue) movement closes the nucleotide binding pocket and form the signal transducing “on” state. With the last apparent rate,  $k_3$ , the binding pocket opens again, and Ras returns into the “off” state. (C) Within  $k_2$  the Arg-finger (green) of Ras-GAP moves into the binding pocket and the bond connecting the  $\gamma$ - and  $\beta$ -phosphate is cleaved leading to the formation of a protein-bound  $H_2PO_4^- (P_i)$ . Within  $k_3$  which is the rate-limiting step, the  $H_2PO_4^-$  is released from the protein into the bulk solvent (Gerwert et al. 2017).

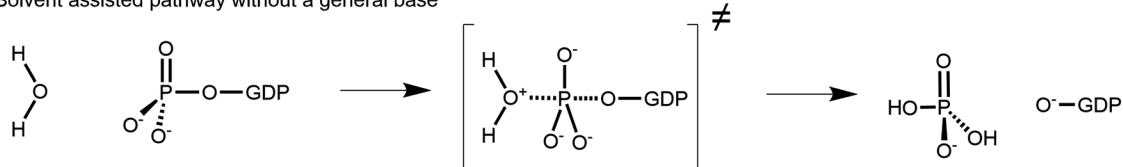


**Figure 3:** Environment dependent changes of the GTP hydrolysis reaction (Gerwert et al. 2017). Comparison of the detailed structures and charge distributions of GTP free in water (red), bound to Ras (blue), and in the Ras-Ras-GAP complex (green). The changes in the GTP environment lead to structural changes and charge shifts, bringing the conformation of the GTP educt state closer to that of the transition state. The shown results were obtained by combining experimental FTIR spectroscopy and theoretical IR spectroscopy (Gerwert et al. 2017; Rudack et al. 2012b).

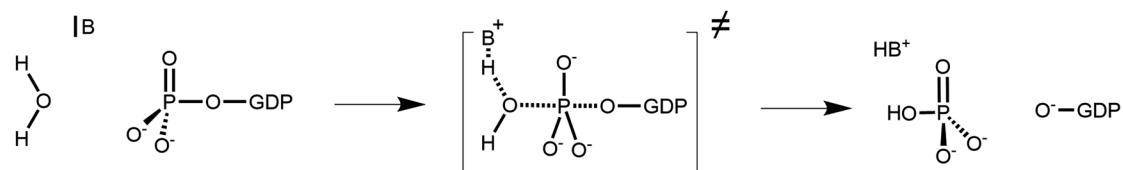
combination of FTIR data with QM/MM simulations further enabled to obtain structural insights into the  $\text{H}_2\text{PO}_4^-$ -Guanosine diphosphate intermediate state of the Ras-GAP complex (Xia et al. 2012).

The hydrolysis mechanism itself has also been discussed for a long time. In the beginning there was one main question that Fred Wittinghofer and others always asked: Is the reaction associative or dissociative? (Wittinghofer 2006; Florian and Warshel 1998). Dissociative or associative means that either the bond between  $\beta$ - and  $\gamma$ -phosphate is cleaved first and then the new bond between the attacking water molecule and the cleaved group is formed, or *vice versa*. Later, instead of a fully dissociative or fully associative pathway, concerted pathways (Figure 4) were favored (Klahn et al. 2006) which was confirmed in recent quantum chemical calculations (Calixto et al. 2019). While the crucial role of Gln61 for positioning the nucleophilic water molecule is accepted in the field for a long time (Pai et al. 1990), glutamine tautomerization (Figure 4D) is a mechanism that is also discussed in some theoretical paper (Grigorenko et al. 2019; Pardos et al. 2025). In support of this theory, it can be argued that water positioning should also be possible with other side chains that form equally stable hydrogen bonds with water, but the glutamine is conserved in almost all GTPases. However, the majority of all publications do not favor this mechanism. An extensive computational study comparing the solvent assisted pathway without a general base, a general base catalyzed pathway, and the substrate assisted pathway (Figure 4) showed a good agreement of the calculated free energy with the experimentally measured one only for the solvent assisted pathway without a general base (Calixto et al. 2019). Another recent study brings into play a more important role of the Mg ion,

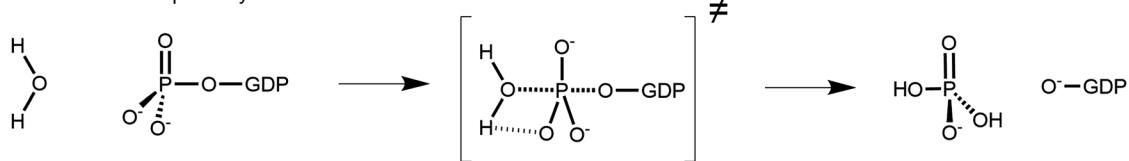
which stabilizes an OH<sup>-</sup>, allowing the protonation of the  $\gamma$ -phosphate (Yan et al. 2025).


## 4 Drugs targeting the Ras protein

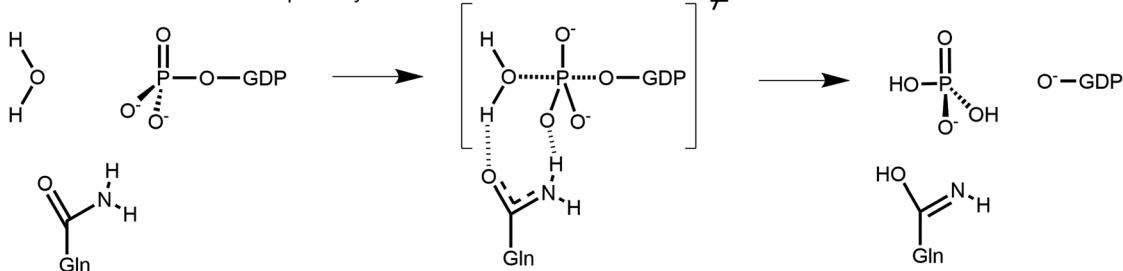
Despite enormous efforts, Ras has long been “undruggable” (Cox and Der 2025). The first direct Ras inhibitor AMG510 (Sotorasib) was approved by the FDA in 2021 (Skoulidis et al. 2021) more than 30 years after the structure was solved (Pai et al. 1989).


Since drugs that compete for binding to the nucleotide binding site fail due to the picomolar affinity for guanine nucleotides (John et al. 1990) and the flat Ras surface that lacks other binding pockets, the first attempts to target Ras were made by farnesyltransferase inhibitors. However, K-Ras and N-Ras were found to be substrates of geranylgeranyltransferase instead, restoring membrane localization (Brunsved et al. 2006). Nevertheless, farnesyltransferase inhibitors are now in clinical trials for H-Ras (Witzig et al. 2024). A related approach is to block the prenyl-binding protein PDE8 that is important for the correct localization of K-Ras (Zimmermann et al. 2013).

A breakthrough was the discovery of a druggable pocket next to the switch II by the Shokat group and the covalent binding of an inhibitor to the Cys12 of the K-Ras G12C mutant (Ostrem et al. 2013). This was the starting point for the development of several inhibitors for Ras G12C and later non-covalently bound inhibitors for other oncogenic mutants such as MRTX1133 for G12D (Hallin et al. 2022). A covalent inhibitor for another mutant is G12Si-5, which binds to Ser12 of the G12S mutant by acylation (Zhang et al. 2022a). Other covalently bound small molecules have been found for


## A Solvent assisted pathway without a general base




## B General base assisted pathway



## C Substrate assisted pathway



## D Gln61 tautomerization assisted pathway



**Figure 4:** Possible reaction mechanisms for GTP hydrolysis (Calixto et al. 2019; Grigorenko et al. 2019). (A) Solvent assisted pathway with the nucleophilic attack as the first step. (B) General base assisted pathway. (C) Substrate assisted pathway with the substrate as the base. (D) Gln tautomerization assisted pathway with an imide intermediate which will eventually react back to the amine.

G12R (Zhang et al. 2022b). Another promising class of Ras inhibitors are “tricomplex” inhibitors, where the small molecule binds to cyclophilin A and then to Ras (Wasko et al. 2024). In this way, pan-Ras inhibitors can be developed. Further it was found that they can restore GTPase activity (Cuevas-Navarro et al. 2025). In addition, nucleotide-competitive inhibitors have been developed for G12C and G13C mutants that take advantage of covalent binding to cysteine (Goebel et al. 2023; Hunter et al. 2014). Several recent reviews extensively discuss the development of Ras inhibitors and their use in therapy (Cox and Der 2025; Moore et al. 2020; Nussinov and Jang 2024; Pandey et al. 2024; Yin et al. 2023).

In conclusion, the intensive mechanistic and structural insights gained over many years by Fred Wittinghofer and

others, have provided a deep understanding of Ras-catalyzed GTP hydrolysis, and opened up new avenues for the development of targeted therapeutic strategies against Ras-associated diseases.

**Acknowledgments:** We thank Aysa Yelboga and Torben Fürtges for support with the graphical design of Figure 1.

**Research ethics:** Not applicable.

**Informed consent:** Not applicable.

**Author contributions:** All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

**Use of Large Language Models, AI and Machine Learning Tools:** LLM was used to improve language.

**Conflict of interest:** The authors state no conflict of interest.  
**Research funding:** None declared.  
**Data availability:** Not applicable.

## References

Bos, J.L., Rehmann, H., and Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. *Cell* 129: 865–877.

Brucker, S., Gerwert, K., and Kötting, C. (2010). Tyr39 of ran preserves the Ran.GTP gradient by inhibiting GTP hydrolysis. *J. Mol. Biol.* 401: 1–6.

Brunsveld, L., Kuhlmann, J., Alexandrov, K., Wittinghofer, A., Goody, R.S., and Waldmann, H. (2006). Lipidated Ras and Rab peptides and proteins – synthesis, structure, and function. *Angewandte Chemie Int. Ed.* 45: 6622–6646.

Calixto, A.R., Moreira, C., Pabis, A., Kötting, C., Gerwert, K., Rudack, T., and Kamerlin, S.C.L. (2019). GTP hydrolysis without an active site base: a unifying mechanism for Ras and related GTPases. *J. Am. Chem. Soc.* 141: 10684–10701.

Cherfils, J. and Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. *Physiol. Rev.* 93: 269–309.

Cox, A.D. and Der, C.J. (2010). Ras history: the saga continues. *Small GTPases* 1: 2–27.

Cox, A.D. and Der, C.J. (2025). “Undruggable KRAS”: druggable after all. *Gene Dev.* 39: 132–162.

Cuevas-Navarro, A., Pourfarjam, Y., Hu, F., Rodriguez, D.J., Vides, A., Sang, B., Fan, S., Goldgur, Y., Stanchina, E.D., and Lito, P. (2025). Pharmacological restoration of GTP hydrolysis by mutant RAS. *Nature* 637: 224–229.

Daumke, O. and Praefcke, G.J.K. (2016). Invited review: mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. *Biopolymers* 105: 580–593.

Fink, J.C., Landry, D., and Webb, L.J. (2024). Probing the electrostatic effects of H-Ras tyrosine 32 mutations on intrinsic GTP hydrolysis using vibrational stark effect spectroscopy of a thiocyanate probe. *Biochemistry* 63: 1752–1760.

Florian, J. and Warshel, A. (1998). Phosphate Ester hydrolysis in aqueous solution: associative versus dissociative mechanisms. *J. Phys. Chem. B* 719–734, <https://doi.org/10.1021/jp972182y>.

García-España, A. and Philips, M.R. (2023). Origin and evolution of RAS membrane targeting. *Oncogene* 42: 1741–1750.

Gasper, R. and Wittinghofer, F. (2019). The Ras switch in structural and historical perspective. *Biol. Chem.* 401: 143–163.

Gerwert, K., Mann, D., and Kötting, C. (2017). Common mechanisms of catalysis in small and heterotrimeric GTPases and their respective GAPs. *Biol. Chem.* 398: 523–533.

Goebel, L., Kirschner, T., Koska, S., Rai, A., Janning, P., Maffini, S., Vatheuer, H., Czodrowski, P., Goody, R.S., Müller, M.P., et al. (2023). Targeting oncogenic KRasG13C with nucleotide-based covalent inhibitors. *eLife* 12: e82184.

Grigorenko, B.L., Kots, E.D., and Nemukhin, A.V. (2019). Diversity of mechanisms in Ras-GAP catalysis of guanosine triphosphate hydrolysis revealed by molecular modeling. *Org. Biomol. Chem.* 17: 4879–4891.

Hallin, J., Bowcut, V., Calinisan, A., Briere, D.M., Hargis, L., Engstrom, L.D., Laguer, J., Medwid, J., Vanderpool, D., Liset, E., et al. (2022). Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. *Nat. Med.* 28: 2171–2182.

Hu, F., Wang, Y., Zeng, J., Deng, X., Xia, F., and Xu, X. (2024). Unveiling the State transition mechanisms of Ras proteins through enhanced sampling and QM/MM simulations. *J. Phys. Chem. B* 128: 1418–1427.

Hunter, J.C., Gurbani, D., Ficarro, S.B., Carrasco, M.A., Lim, S.M., Choi, H.G., Xie, T., Marto, J.A., Chen, Z., Gray, N.S., et al. (2014). *In situ* selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. *Proc. Natl. Acad. Sci. U. S. A.* 111: 8895–8900.

John, J., Sohmen, R., Feuerstein, J., Linke, R., Wittinghofer, A., and Goody, R.S. (1990). Kinetics of interaction of nucleotides with nucleotide-free H-Ras p21. *Biochemistry* 29: 6058–6065.

Johnson, C.W., Reid, D., Parker, J.A., Salter, S., Knihtila, R., Kuzmic, P., and Mattos, C. (2017). The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. *J. Biol. Chem.* 292: 12981–12993.

Klähn, M., Rosta, E., and Warshel, A. (2006). On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins. *J. Am. Chem. Soc.* 128: 15310–15323.

Kötting, C., Blesenohl, M., Suveyzdis, Y., Goody, R.S., Wittinghofer, A., and Gerwert, K. (2006). A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein. *Proc. Natl. Acad. Sci. U. S. A.* 103: 13911–13916.

Kötting, C. and Gerwert, K. (2004). Time-resolved FTIR studies provide activation free energy, activation enthalpy and activation entropy for GTPase reactions. *Chem. Phys.* 307: 227–232.

Kötting, C., Kallenbach, A., Suveyzdis, Y., Eichholz, C., and Gerwert, K. (2007). Surface change of Ras enabling effector binding monitored in real time at atomic resolution. *Chembiochem* 8: 781–787.

Kötting, C., Kallenbach, A., Suveyzdis, Y., Wittinghofer, A., and Gerwert, K. (2008). The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy. *Proc. Natl. Acad. Sci. U. S. A.* 105: 6260–6265.

Krengel, U., Schlichting, I., Scherer, A., Schumann, R., Frech, M., John, J., Kabsch, W., Pai, E.F., and Wittinghofer, A. (1990). Three-dimensional structures of H-Ras p21 mutants: molecular basis for their inability to function as signal switch molecules. *Cell*: 539–548, [https://doi.org/10.1016/0092-8674\(90\)90018-a](https://doi.org/10.1016/0092-8674(90)90018-a).

Li, Y., Zhang, Y., Großerüschkamp, F., Stephan, S., Cui, Q., Kötting, C., Xia, F., and Gerwert, K. (2018). Specific substates of Ras to interact with GAPs and effectors: revealed by theoretical simulations and FTIR experiments. *J. Phys. Chem. Lett.* 9: 1312–1317.

Lin, G., Zinser-Peniche, P., Zhou, X., Santiago, U., Kurnikov, I., Russi, S., Chagas, B., Sharpe, M.E., Stegmann, D.P. and Heinig, S.A., et al. (2025). <https://doi.org/10.1101/2025.08.21.670574>, Time-resolved crystallography reveals the mechanisms of GTP hydrolysis for N-RAS and the oncogenic mutants G12C, G12V and Q61L. *bioRxiv [Preprint]*.

Maracci, C. and Rodnina, M.V. (2016). Review: translational GTPases. *Biopolymers* 105: 463–475.

Matsunaga, S., Hano, Y., Saito, Y., Fujimoto, K.J., Kumasaka, T., Matsumoto, S., Kataoka, T., Shima, F., and Tanaka, S. (2017). Structural transition of solvated H-Ras/GTP revealed by molecular dynamics simulation and local network entropy. *J. Mol. Graph. Model.* 77: 51–63.

Mazhab-Jafari, M.T., Marshall, C.B., Ishiyama, N., Ho, J., Di Palma, V., Stambolic, V., and Ikura, M. (2012). An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. *Structure (London)* 20: 1528–1539.

Mishra, A.K. and Lambright, D.G. (2016). Small GTPases and their GAPs. *Biopolymers* 105: 431–448.

Moore, A.R., Rosenberg, S.C., McCormick, F., and Malek, S. (2020). RAS-targeted therapies: is the undruggable drugged? *Nat. Rev. Drug Discov.* 19: 533–552.

Nussinov, R. and Jang, H. (2024). Direct K-Ras inhibitors to treat cancers: progress, new insights, and approaches to treat resistance. *Annu. Rev. Pharmacol. Toxicol.* 231–253, <https://doi.org/10.1146/annurev-pharmtox-022823-113946>.

Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A., and Shokat, K.M. (2013). K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. *Nature* 503: 548–551.

Pai, E.F., Kabsch, W., Krengel, U., Holmes, K.C., John, J., and Wittinghofer, A. (1989). Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. *Nature* 341: 209–214.

Pai, E.F., Krengel, U., Petsko, G.A., Goody, R.S., Kabsch, W., and Wittinghofer, A. (1990). Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. *EMBO J.* 9: 2351–2359.

Pandey, D., Chauhan, S.C., Kashyap, V.K., and Roy, K.K. (2024). Structural insights into small-molecule KRAS inhibitors for targeting KRAS mutant cancers. *Eur. J. Med. Chem.* 277: 116771.

Pardos, J., García-Martínez, A., Ruiz-Pernía, J.J., and Tuñón, I. (2025). Mechanistic insights into GTP hydrolysis by the RhoA protein: catalytic impact of glutamine tautomerism. *ACS Catal.* 15: 4415–4428.

Patel, L.A., Waybright, T.J., Stephen, A.G., and Neale, C. (2023). GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation. *Comput. Biol. Chem.* 104: 107835.

Polyakov, I. and Nemukhin, A. (2023). Computational modeling of the neurofibromin-stimulated guanosine triphosphate hydrolysis by the KRas protein. *Biophysica* 3: 373–384.

Rittinger, K., Walker, P.A., Eccleston, J.F., Nurmahomed, K., Owen, D., Laue, E., Gamblin, S.J., and Smerdon, S.J. (1997). Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. *Nature* 388: 693–697.

Rudack, T., Jenrich, S., Brucker, S., Vetter, I.R., Gerwert, K., and Kötting, C. (2015). Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy. *J. Biol. Chem.* 290: 24079–24090.

Rudack, T., Xia, F., Schlitter, J., Kötting, C., and Gerwert, K. (2012a). Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations. *Proc. Natl. Acad. Sci. U. S. A.* 109: 15295–15300.

Rudack, T., Xia, F., Schlitter, J., Kötting, C., and Gerwert, K. (2012b). The role of magnesium for geometry and charge in GTP hydrolysis, revealed by quantum mechanics/molecular mechanics simulations. *Biophys. J.* 103: 293–302.

Saraste, M., Sibbald, P.R., and Wittinghofer, A. (1990). The P-loop – a common motif in ATP- and GTP-binding proteins. *Trends Biochem. Sci.* 15: 430–434.

Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmüller, L., Lautwein, A., Schmitz, F., and Wittinghofer, A. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. *Science* 277: 333–338.

Scheidig, A.J., Burmester, C., and Goody, R.S. (1999). The pre-hydrolysis state of p21(Ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of Ras-like proteins. *Structure (London)* 7: 1311–1324.

Simanshu, D.K., Nissley, D.V., and McCormick, F. (2017). RAS proteins and their regulators in human disease. *Cell* 170: 17–33.

Skoulidis, F., Li, B.T., Dy, G.K., Price, T.J., Falchook, G.S., Wolf, J., Italiano, A., Schuler, M., Borghaei, H., Barlesi, F., et al. (2021). Sotorasib for lung cancers with KRAS p.G12C mutation. *N. Engl. J. Med.* 384: 2371–2381.

Spoerner, M., Herrmann, C., Vetter, I.R., Kalbitzer, R., and Wittinghofer, A. (2001). Dynamic properties of the Ras switch I region and its importance for binding to effectors. *Proc. Natl. Acad. Sci. U. S. A.* 98: 4944–4949.

Spoerner, M., Wittinghofer, A., and Kalbitzer, H.R. (2004). Perturbation of the conformational equilibria in Ras by selective mutations as studied by <sup>31</sup>P NMR spectroscopy. *FEBS Lett.* 578: 305–310.

Sprang, S.R. (2016). Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. *Biopolymers* 105: 449–462.

Vetter, I.R. and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. *Science* 294: 1299–1304.

Volmar, A.Y., Guterres, H., Zhou, H., Reid, D., Pavlopoulos, S., Makowski, L., and Mattos, C. (2022). Mechanisms of isoform-specific residue influence on GTP-bound HRas, KRas, and NRas. *Biophys. J.* 121: 3616–3629.

Wasko, U.N., Jiang, J., Dalton, T.C., Curiel-Garcia, A., Edwards, A.C., Wang, Y., Lee, B., Orlen, M., Tian, S., Stalnecker, C.A., et al. (2024). Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer. *Nature* 629: 927–936.

Wittinghofer, A. (2006). Phosphoryl transfer in Ras proteins, conclusive or elusive? *Trends Biochem. Sci.* 31: 17–20.

Wittinghofer, A. and Nassar, N. (1996). How Ras-related proteins talk to their effectors. *Trends Biochem. Sci.* 21: 488–491.

Wittinghofer, A. and Vetter, I.R. (2011). Structure-function relationships of the G domain, a canonical switch motif. *Annu. Rev. Biochem.* 80: 943–971.

Witzig, T., Sokol, L., Kim, W.S., La Cruz Vicente, F.D., Martín García-Sancho, A., Advani, R., Roncero Vidal, J.M., Oña Navarrete, R.D., Marín-Niebla, A., Rodriguez Izquierdo, A., et al. (2024). Phase 2 trial of the farnesyltransferase inhibitor tipifarnib for relapsed/refractory peripheral T-cell lymphoma. *Blood Adv.* 8: 4581–4592.

Xia, F., Rudack, T., Cui, Q., Kötting, C., and Gerwert, K. (2012). Detailed structure of the H<sub>2</sub>PO<sub>4</sub><sup>2-</sup>-guanosine diphosphate intermediate in Ras-GAP decoded from FTIR experiments by biomolecular simulations. *J. Am. Chem. Soc.* 134: 20041–20044.

Yan, X., Zhu, L., Li, Q., Tian, Y., Qiu, J., Liu, X., Tong, H.H.Y., Ouyang, Q., Yao, X., and Liu, H. (2025). QM/MM study reveals novel mechanism of KRAS and KRASG12R catalyzed GTP hydrolysis. *Int. J. Biol. Macromol.* 297: 139820.

Yin, G., Huang, J., Petela, J., Jiang, H., Zhang, Y., Gong, S., Wu, J., Liu, B., Shi, J., and Gao, Y. (2023). Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. *Signal Transduct. Targeted Ther.* 8: 212.

Zhang, Z., Guiley, K.Z., and Shokat, K.M. (2022a). Chemical acylation of an acquired serine suppresses oncogenic signaling of K-Ras(G12S). *Nat. Chem. Biol.* 18: 1177–1183.

Zhang, Z., Morstein, J., Ecker, A.K., Guiley, K.Z., and Shokat, K.M. (2022b). Chemoselective covalent modification of K-Ras(G12R) with a small molecule electrophile. *J. Am. Chem. Soc.* 144: 15916–15921.

Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., Hahn, S.A., Triola, G., Wittinghofer, A., Bastiaens, P.I.H., et al. (2013). Small molecule inhibition of the KRAS-PDE6 interaction impairs oncogenic KRAS signalling. *Nature* 497: 638–642.