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ABSTRACT: Understanding biomolecular function at the atomic
scale requires detailed insight into the structural changes underlying
dynamic processes. Vibrational infrared (IR) spectroscopy�when
paired with biomolecular simulations and quantum-chemical
calculations�determines bond length variations on the order of
0.01 Å, providing insights into these structural changes. Here, we
address the forward problem in IR spectroscopy: predicting high-
accuracy vibrational spectra from known molecular structures
identified by biomolecular simulations. Solving this problem lays
the groundwork for the inverse problem: inferring structural
ensembles directly from experimental IR spectra. We evaluate two
computational approaches, normal-mode analysis and Fourier-
transformed dipole autocorrelation, against experimental IR spectra
of N-methylacetamide, a prototypical model for peptide bond vibrations. Spectra are derived from simulation models at multiple
levels of theory, including hybrid quantum mechanics/molecular mechanics, machine-learned, and classical molecular mechanics
approaches. Our results highlight the capabilities and limitations of current theoretical biophysical approaches to decode structural
information from experimental vibrational spectroscopy data. These insights underscore the potential of future artificial intelligence
(AI)-enhanced models to enable direct IR-based structure determination. For example, resolving the so-far experimentally
inaccessible structures of toxic oligomers involved in neurodegenerative diseases, enabling improved disease diagnostics and targeted
therapies.

■ INTRODUCTION
Conformational changes in proteins and biomolecules play a
central role in many cellular processes. For many years,
spectroscopic methods have been invaluable tools for
elucidating the underlying structures and dynamics. While
techniques such as Nuclear Magnetic Resonance (NMR)
spectroscopy yield atomic-level structures,1 and others such as
Förster Resonance Energy Transfer (FRET)2 and Circular
Dichroism (CD)3 probe distances and secondary structures,
respectively, infrared (IR) spectroscopy, stands out for its
combination of sensitivity and temporal resolution.4,5

The power of IR stems from its ability to resolve minute
structural changes, where a ∼1 cm−1 frequency shift
corresponds to a change in bond length of ∼0.001 Å.5 While
initially used for the qualitative and quantitative analysis of
organic compounds,6 IR’s high resolution also makes it ideal
for studying enzyme mechanisms and active site dynamics.7 By
probing the amide I band, IR spectroscopy distinguishes

regions of α-helices and β-sheets, and this has led to its use in
biosensors for diagnosing proteinopathies such as Alzheimer’s
or Parkinson’s disease.8,9 Furthermore, time-resolved Fourier
Transform Infrared Spectroscopy (FTIR) offers the unique
advantage of being able to capture dynamics on the
nanosecond-to-second timescale.10−12

However, this remarkable sensitivity creates a significant
challenge: the rich information about structure−function
relationships is hidden within broad, overlapping vibrational
bands that are difficult to assign. Unlike NMR, where spin−
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spin couplings yield well-defined patterns, IR spectra are more
challenging to decode. 2D-IR distinguishes some mode
couplings, but it requires femtosecond lasers and suffers from
low signal-to-noise ratio.13 Therefore, computational biophy-
sics, especially biomolecular simulations and quantum-
mechanical calculations, is essential to translate spectroscopic
observables into detailed structural models and mechanistic
insights. Historically pioneering work has been done in the
context of NMR spectroscopy, bridging experiment and
theory, by Prof. Peter A. Kollman and collaborators. In this
spirit we dedicate this article.14−20

Historically, computational approaches have focused on
solving the forward problem: predicting an IR spectrum from a
proposed structure (Figure 1A). A human-in-the-loop
procedure then iteratively refines the structure until the
calculated spectrum matches the experimental one. To obtain
a spectrum, two parts are required: a simulation model, which
computes trajectories of structural ensembles, and a spectrum
model, which computes spectra from the structural data.
Depending on the required accuracy, various molecular
dynamics (MD) approaches can be employed, such as ab
initio quantum mechanics (QM), hybrid quantum mechanics/
molecular mechanics (QM/MM) simulations, or classical
molecular mechanics (MM). Then, to obtain the spectrum,
two primary techniques exist. The first, Normal Mode Analysis
(NMA), calculates vibrational frequencies from the Hessian
matrix of a single equilibrium structure. Warshel’s,21 as well as
Tavan and Schulten’s work on the retinal structures22,23

validated this approach by obtaining similar IR spectra to
experiments. While computationally efficient in its basic form,

this approach fails to capture the conformational diversity of
molecules at room temperature. This limitation is partly
addressed by applying NMA to an ensemble of structures
derived from MD simulations either MM or QM/MM.24−26

However, this ensemble-based NMA becomes significantly
more computationally demanding, as the Hessian matrix must
be calculated and diagonalized for a large number of structures.
Another approach, typically less computationally demanding, is
to compute IR spectra directly from MD simulations via the
Fourier transform (FT) of the dipole autocorrelation
function27−31 which naturally includes the effects of conforma-
tional heterogeneity. However, assigning these IR bands to
specific nuclear motions is highly challenging compared to the
straightforward approach in Normal Mode Analysis. Determin-
ing isotopic effects within a dipole autocorrelation-framework
requires repeating the underlying MD because the isotopic
substitution changes the atomic masses and therefore the
dynamics/time-correlation functions, meaning this method
typically yields a single, unassigned spectrum, although
techniques have been suggested that partially overcome this
limitation.32−34 By contrast for NMA isotopic substitution is
straightforward: updating the masses in the (mass-weighted)
Hessian shifts the frequencies without requiring geometry
reoptimization, since the conformational minima remain the
same.
Complementary to direct first-principles routes (NMA and

dipole moment autocorrelation analysis (DMA)), the field has
developed spectroscopic frequency maps that relate local
electrostatic descriptors (e.g., electric field, field gradient, and
geometry) to amide I frequencies and transition-dipole

Figure 1. Traditional and ML-enhanced structural spectroscopy strategies. The traditional strategy (A), addressing the forward problem in IR
spectroscopy, starts with a structural proposal and a human-in-the-loop iteratively updates the structure by comparing its theoretical spectrum with
an experimental reference, until close alignment. The ML-enhanced strategy tackling the inverse problem (B) requires first training a model on a
paired spectrum-structure dataset. The experimental spectrum, often conditioned with a structural prior (such as a SMILES string or reference
geometry), is then passed as input to the trained model. The model output is a direct prediction of the molecule’s 3D structure based on the
experimental spectrum. Other paradigms for ML-enhanced workflows are also possible; see the main text for details.
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moments. These maps are commonly calibrated on model
systems such as N-methylacetamide and then transferred to
peptides and proteins, enabling exciton-based simulations of
1D- and 2D-IR spectra. For overviews and representative
developments, see previous studies.35−42

Increasingly, machine learning (ML) methods are providing
new ways of accelerating the forward problem. For instance,
ML-force fields and dipole models can be trained on density
functional theory (DFT) data, enabling MD simulations at a
level approaching DFT accuracy but at a fraction of the
computational cost, which can then be used with NMA or FT
analysis to generate the spectrum.43 While accurate, this
simulation-based approach is not scalable, as it requires fresh
computation for each new molecule. An alternative approach
uses supervised ML models to directly map molecular
structures to their IR spectra. While early work focused on
specific bands like the amide I frequency in proteins,44 recent
graph neural networks generate full spectra.45,46 These models
show high correlation (Spearman ∼ 0.9) with ground truth
data, but their performance drops significantly for molecules
with novel structural features outside of the training data, and
there remains substantial room for improvement in predicting
absorption intensities and bandwidths.
In addition to accelerating the forward problem, ML

techniques are starting to introduce a paradigm shift by

attempting to directly solve the inverse problem: predicting a
molecular structure directly from its spectrum (Figure 1B).
This strategy requires training on paired structure-spectrum
data, where the structure also encodes all the determining
environmental factors, such as solvation, hydrogen-bond
networks, ion concentration and protonation states/pH. In
practice, pairs can be assembled by combining experimentally
validated conformational ensembles (MD simulations with
explicit solvent and ions, cross-checked by NMR/SAXS/CD)
with matched IR/2D-IR spectra under identical conditions,
additionally employing isotope labeling to generate site-specific
information. Although predicting a full 3D structure from an
IR spectrum alone is currently an unsolved challenge,47

significant progress has been made on simplified tasks like
predicting functional groups48 or generating molecular
graphs.49 Accuracy is further improved by incorporating prior
knowledge or complementary data, with the integration of
NMR spectra proving particularly effective.50

Here, we explore how machine learning (ML) can advance
IR spectroscopy into a method for analyzing molecular
structure and dynamics, comparable to NMR spectroscopy.
To assess this potential, we compare six theoretical workflows
for generating IR spectra, combining two calculation methods
(Normal Mode Analysis and Dipole Autocorrelation) with
three simulation approaches (Classical MM, QM/MM, and

Figure 2. Traditional theoretical IR spectroscopy workflow. First, we performed 70 ns classical molecular mechanics (MM) simulations with a 2 fs
step size, to equilibrate the trans and cis conformations of N-methylacetamide in solution. We then used the geometries of the representative
simulation structure as starting points for the three simulations sampling the atomic motion within one conformation with a step size of 0.1 fs: A
classical MM simulation with the OPLS/AA force field,57 a machine-learned potential-based MD simulation with ANI-2x58 and a QM/MM
simulation using MiMiC.59,60 From each of these runs, a theoretical IR spectrum was calculated using both NMA and DMA. For validation, these
spectra were compared with the experimental IR spectrum. This workflow allows a systematic evaluation of how both the IR calculation method
and the underlying simulation technique affect spectral accuracy and conformational differentiation.
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ML-based potentials) hereafter referred to collectively as MD
simulations.
We apply these workflows to N-methylacetamide, a common

benchmark molecule that models a peptide backbone and
exists in two distinct conformations, trans and cis.51−56 By
validating the calculated spectra against experimental data, we
provide a basis for discussing the merits of each simulation and
calculation method.
Ultimately, we anticipate that this rigorous integration of

experimental and theoretical IR spectroscopy has the potential
to become a cornerstone of 4D structural biology,
complementing time-resolved X-ray crystallography and cryo-
EM. Beyond its broad applicability, this approach holds
particular promise for resolving challenging targets such as the
heterogeneous aggregates implicated in neurodegenerative
diseases such as Alzheimer’s and Parkinson’s. The detailed
structural insight gained could lay the foundation for advances
in diagnostics and targeted therapies�an achievement that has
so far remained out of reach for existing structural biology
methods.

■ METHODS
To account for dynamic ensembles found in IR spectra, we
make use of biomolecular simulation strategies to generate
these ensembles. We compare different simulation approaches
using quantum chemical calculations and molecular dynamics
(MD) simulations to assess their ability to produce high-
quality theoretical IR spectra.
The overall workflow is presented in Figure 2 and

encompasses the following steps. First, a classical molecular
mechanics (MM) simulation was used to equilibrate a solvated
starting structure of trans- and cis-N-methylacetamide (cis-
NMA), followed by three different types of biomolecular
simulation production runs from which IR spectra are derived.
In the following, we present the details of the different
methods used to simulate the structural ensemble and to
extract the calculated theoretical IR spectra.
Simulation System Preparation. The workflow is

initiated by preparing the structures of trans-NMA and cis-
NMA (Figure 2, top left corner) using the software packages
MAXIMOBY (v. 2025)61 and GROMACS (v. 2024.1).62,63

Initially, the first and second solvation shells were added using
the solvation approach implemented in MAXIMOBY that is
based on the Vedani algorithm.64 To prevent self-interactions
due to periodic boundary conditions, the solvated cluster was
placed in a cubic simulation cell with a minimum padding
distance of 13 Å. This resulted in a cubic box with an edge
length of 44 Å for trans-NMA and 42 Å for cis-NMA. The box
was then filled with bulk water containing 2754 and 2549
water molecules, respectively, using the solvation strategy
implemented in GROMACS. To resolve steric clashes in the
transition between the second solvation shell and the bulk
water, an energy optimization of water hydrogen atoms was
performed in MAXIMOBY using the implemented Amber8465

united atom force field and the force field corresponding
TIP3P water model.66 Finally, we convert the TIP3P water
model to TIP4P.66 TIP4P is commonly paired with the
Optimized Potentials for Liquid Simulations/All Atom
(OPLS/AA) force field57 and shows improved dynamic
properties. Therefore, it is used for the subsequent simulations.
It shows better agreement with experimental measurements for
dynamic properties.66

Molecular Mechanics (MM) Simulations. The prepared
structure serves as the starting point for the two initial trans-N-
methylacetamide (trans-NMA) and cis-N-methylacetamide
(cis-NMA) MM simulations, illustrated in Figure 2 as two
broad, blue arrows. The systems were heated to 293 K during a
1 ns NVT equilibration with a step size of 1 fs. The
temperature was controlled using a velocity-rescaling thermo-
stat67 with a coupling constant of 0.1 ps. The heating process
was carried out in two stages: Initially, the temperature was
gradually increased from 0 to 100 K over the first 100 ps,
followed by a further increase to 293 K over the subsequent
900 ps. This temperature was chosen to match the room
temperature during the experimental measurements. The
system was then equilibrated using an additional 1 ns NVT
simulation (step size 1 fs) with a constant temperature of 293
K, followed by a 10 ns NPT simulation (step size 1 fs). The
temperature coupling is done with the velocity-rescaling
thermostat (coupling constant 0.1 ps) to stabilize the system
temperature, and the pressure coupling using a Berendsen
barostat68 (coupling constant 0.1 ps) to rapidly relax the
density to the target. These schemes are well suited for
equilibration but do not generate a rigorously correct NPT.
Subsequently, a 70 ns NPT production run with a step size of 2
fs was performed, using the Nose-́Hoover thermostat69,70

(coupling constant 0.5 ps) and the Parrinello−Rahman
barostat71 (coupling constant 2.5 ps) which together ensure
a physically correct representation of the NPT ensemble.
Coordinates and velocities were handed over without
reinitialization. Standard observables (T, P) and the peptide
bond dihedral ω displayed no discontinuations. To allow for a
step size of 2 fs, the heavy atom-hydrogen bonds were
constrained with the LINCS algorithm.72 We extracted a
representative structure (see Figure 3) from each of the trans
and cis-NMA production runs to initiate the more detailed MD
simulations. The final MM runs (Figure 2, top filled green

Figure 3. Water interactions with N-methylacetamide during a 70 ns
(2 fs step size) molecular dynamics simulation. Representative
structures for the (A) trans- and (C) cis-conformations are shown
with direct interacting water molecules; bulk solvent is omitted for
clarity. The number of water molecules bound to the carbonyl and
amide groups was tracked over the simulation time. On average, two
water molecules are bound to the carbonyl and one to the amide for
both conformations. The percentage of occupation of different
numbers of water molecules over the simulation time is shown next to
the structures. Panels (B) and (D) show the contact analysis over
time, color-coded for the number of different water molecules, for
trans- and cis-conformations, respectively. The first and second data
points, labeled S and E correspond to the starting structure and the
structure after heating and equilibration.
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arrow) were used to extract spectra with NMA and DMA apply
the same simulation strategies using a time step of 0.1 fs and
no constraints on any bonds. All run parameter mdp files and
the resulting representative MD simulations structures are
available at doi: 10.5283/EPUB.77953.
Molecular Mechanics (MM) Simulation Analysis.

Intermolecule interactions between N-methylacetamide and
water molecules were analyzed using PyContact1473 and the
contact matrix algorithm implemented in MAXIMOBY.61 N-
methylacetamide possesses no major internal degrees of
freedom apart from the trans/cis isomerization. The
representative structure of the first MM MD simulation was
therefore defined by its contacts with the surrounding water
molecules. We identified the number of water molecules
forming a hydrogen bond to each functionality of N-
methylacetamide every 0.1 ns. On average, about two waters
are present at the carbonyl and 1 water at the amide (Figure
3). This was true for both conformations. As there were many
structures fulfilling these criteria, we picked the last geometries
of the respective simulations doing so and used them as
starting structures for the finer MD runs. In Figure 2, these
simulation runs are shown as green, broad arrows, originating
from green boxes. The three simulation types are listed
vertically. All run parameter mdp files are available at doi:
10.5283/EPUB.77953.
Molecular Dynamics Simulations Using Machine-

Learned Interatomic Potentials. Hybrid ML/MD simu-
lations (Figure 2, middle filled green arrow) were initiated by
the two representative N-methylacetamide structures using for
each two types of machine-learned interatomic potentials:
ANI-2x and MACE-OFF23 (small).58,74 ANI-2x, which
currently supports C, O, H, N, F, Cl, and S atoms, was
trained on 8.9 million molecular conformations of drug-like
molecules from GDB-11 and ChEMBL.75,76 The potential is
constructed from atomic environment vectors77 and trained to
reproduce molecular energies and forces at the ωB97X/6-
31G(d) level of DFT theory. MACE-OFF23 supports C, O, H,
N, F, Cl, S, P, Br, and I atoms and is trained on the SPICE
dataset78 with an equivariant MACE architecture neural
network.79 MACE-OFF was trained to reproduce the energies
and forces computed at the ωB97M-D3(BJ)/def2-TZVPPD
level of DFT theory.
In all simulations, the ML potential (either ANI-2x or

MACE-OFF23) was used to model forces between atoms of
N-methylacetamide. The molecule was solvated in a water box
of classical TIP4P.66 All forces between the water and N-
methylacetamide were modeled with the OPLS/AA force
field.57 Simulations were performed in OpenMM 8.2 in the
NVT ensemble using the recommended BAOAB-Langevin
integrator at 293 K (Langevin thermostat) with a friction
coefficient of 1 ps.80 The equilibration run was 15 ps with a 1 fs
time step. The production run was 70 ps with a 0.1 fs time
step. Comparable simulation lengths have been used in prior
IR studies of N-methylacetamide.81,82 Inakollu et al. computed
FT-DAC spectra for deprotonated serine from a 32 ps
production run of a classical MD simulation.81 By contrast
Schwörer et al. employed QM/MM runs of 100 ps, while
discarding the first 15 ps,82 further illustrating that our
production windows are standard practice. Moreover N-
methylacetamide is a low-complexity system (12 atoms with
30 vibrational modes) dominated by stretching and bending
vibrations. The only slow, large-amplitude motion (trans ↔ cis
around ω) is omitted in our simulation setup, as we ran two

separate simulations of the cis and trans conformation.
Consequently, velocities and dipole autocorrelation converge
on ps timescales. The short 15 ps equilibration suffices to
converge the velocity distribution and the 70 ps production
segment spans a multitude of correlation lengths providing a
nominal resolution of 0.48 cm−1. Code for reproducing these
experiments is available at https://github.com/dominicp6/
mlmd.
Hybrid Quantum Mechanics/Molecular Mechanics

(QM/MM) Simulations. QM/MM calculations (Figure 2,
bottom filled green arrow) were performed through the
MiMiC interface.59,60 MiMiC is a framework to perform
multiscale simulations in which loosely coupled external
programs describe individual subsystems at different reso-
lutions and levels of theory, particularly suitable for HPC
setups.83 In this work, MiMiC coupled the DFT-based
quantum code CPMD84 with the popular classical molecular
dynamics code GROMACS.62,63 To ensure method compara-
bility, we adopted a solute-only QM region in the QM/MM
simulation: N-methylacetamide was treated at the QM level,
while all water molecules were described identically at the MM
level in all protocols (MM, ML, and QM/MM with
electrostatic embedding). Holding the solvent model fixed
means that only the solute description changes between
methods, enabling a direct comparison. Consequently, any
differences in the resulting spectra are attributed to the
methodology rather than to variations in environmental
treatment. Additionally, hydrogen-bond partners exchange on
the ps timescale and would require an adaptive QM region
within the QM/MM MD which is not implemented in the
here used software packages. The QM regions were treated at
DFT level of theory with the PBE recipe for the exchange-
correlation functional.85 The wave function of the QM region
was expanded in a plane-wave basis set up to an energy cutoff
of 70 Ry. Only valence electrons were explicitly treated, while
core electrons were described using norm-conserving pseudo-
potentials of the Martins−Troullier type.86 The MM water
molecules were described by the TIP4P model66 and the
OPLS/AA force field.57

Dipole Moment Autocorrelation Analysis (DMA). One
method for calculating IR spectra is based on the
autocorrelation analysis of the dipole moment. This approach
takes advantage of a key principle of infrared spectroscopy: IR
light is only absorbed if the molecular vibrations lead to a
change in the dipole moment. The dipole moment
autocorrelation function captures these fluctuations by
monitoring how the dipole moment evolves over time during
a molecular dynamics simulation with time steps of 0.1 fs. The
DMA is illustrated in Figure 2 following the path of the three
MD simulations and resulting in the IR Power Spectrum
(green boxes on the right). For QM/MM, the dipole moment
is calculated by CPMD for every step. For MM and ML
trajectories, it is computed from OPLS/AA fixed charges (the
ML model provides only intramolecular terms, nonbonded
interactions and charges are from OPLS/AA).85 To ensure that
relevant vibrational modes are sampled adequately, the
simulation must run long enough to allow multiple oscillation
cycles. The resulting IR power spectrum is obtained by
applying a fast Fourier transform (FFT) to the autocorrelation
data and subsequently corrected using a quantum correction
factor. In molecular dynamics simulations�including QM/
MM and CPMD, the motion of atoms is treated classically. As
a result, quantum effects in vibrations, especially in fast bond
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oscillations, are not fully captured. To account for quantum
mechanical effects during the MD simulation, we multiplied
the IR intensities of the FT-DAC spectrum by the standard
quantum correction factor,

Q
x

e
x

hc
k T T

( )
1

,
1.4388 K cm

x
B

= = · ·

depending on the temperature T and wavenumber ν̃.87,88 This
gives the correct temperature dependence for harmonic
vibrations. The here used method provides a spectral
resolution of 0.48 cm−1, but does not allow a straightforward
assignment of individual normal modes.
Normal Mode Analysis. An alternative method to

compute IR spectra is Normal Mode Analysis (NMA). To
calculate IR spectra, we performed NMA calculations initiated
by structures from each of the three different detailed
simulation trajectories (each 70 ps) with 5 ps distance (15
structures). These structures are depicted in Figure 2 as black
dotted arrows originating from the three MD simulations. We
used the QM/MM embedded NMA frequency calculation
method implemented in ORCA 5.0.4.89 This scheme differ-
entiates between a high layer, consisting of the area that is
treated quantum mechanically, and a low layer, consisting of
the area that is treated using classical molecular mechanics.
The QM part contained the N-methylacetamide and the
closest 10 water molecules. We tested varying numbers of QM-
treated water molecules. A lower amount yielded a worse
experimental agreement, while a higher amount did not
improve it and increased computation time. The MM part
contained all remaining solvent molecules. The eigenvalues
and eigenvectors of the normal vibrations are obtained by
diagonalizing the Hessian. One important condition for this
calculation is that the structure is in an energetic minimum. To
reach a minimum structure we performed an iterative QM/
MM and MM optimization in the same way as described by
Mann et al.90 but replaced the QM software Gaussian by
ORCA. Briefly, the partial charges of the QM region are first
calculated by ORCA using the QM/MM approach with
electrostatic embedding and handed over to MAXIMOBY for
the MM optimizations. Then three alternating optimization
cycles are performed: In each cycle, MAXIMOBY optimized
only the MM subsystem (QM coordinates fixed), followed by
an ORCA 5.0.4 QM/MM optimization of only the QM
subsystem (MM coordinates fixed).61 The coordinates and
charges from each step were passed on to the respective
following step. The calculation of the charges in the QM
region derived from the electrostatic potential follows the
Merz−Singh−Kollman (MK) scheme. The MM optimizations
were performed using the Amber5 force field.91 The QM
calculations were performed using the functional PBE with the
basis set 6-31G*. This turned out to be the most economic
functional and basis set combination to calculate IR spectra as
shown by an extensive comparison study.90 The calculated
intensities were fitted with a Lorentzian function with a width
of 20 wavenumbers and subsequently summed up over the 15
snapshots to generate the final spectrum, illustrated in the
orange row in Figure 2.
Experimental Infrared Spectroscopy (ATR-FTIR Meas-

urements). ATR-FTIR measurements of N-methylacetamide
in H2O were performed using a Vertex-70-spectrometer
(Bruker Optik, Ettlingen, Germany) in the double-sided,
forward−backward mode. The spectral resolution was 2 cm−1

and the scanner velocity 16 kHz. The resulting interferograms
were processed using the Mertz phase correction, a Blackman−
Harris three-term apodization function and a zero filling factor
of 4. The ATR-accessory integrated in the spectrometer was
the DuraSamplIR II (Smiths Detection, London, England)
with nine active reflections. For the spectra, an average of 224
scans was used. The background spectra included 112 scans.
N-Methylacetamide was obtained from Sigma-Aldrich Chem-
icals (St. Louis, USA).

■ RESULTS AND DISCUSSION
Our results and discussion are split into two parts; in the first
part, we evaluate different approaches following the traditional
strategy of connecting IR spectroscopic data with structural
models addressing the forward problem of theoretical IR
spectroscopy. In the second part, we discuss how the evaluated
approaches pave the way for solving the inverse problem of
assigning structures to spectra directly and the potential to
advance IR spectroscopy to a direct structure-giving method
with sub-Ångström resolution.
Sampling of the Conformational Energy Landscape

Results in Two Stable Solvated N-Methylacetamide
Conformations. N-Methylacetamide is a well-studied51−56

benchmark system to model a peptide bond. For IR
spectroscopy to be useful as a structural interrogation method,
such benchmark systems are essential to elucidate more
complex protein structures in the future. To compare our
experimental IR spectrum of N-methylacetamide to the
different theoretical methods, we need a robust understanding
of the conformational space of N-methylacetamide, which we
here generated from molecular dynamics simulations. N-
methylacetamide has two dominant conformers cis-N-methyl-
acetamide (cis-NMA) and trans-N-methylacetamide (trans-
NMA), with the trans form being 2.5 kcal/mol more stable
than the cis form.92−95 Dynamic NMR reports the
interconversion free energy for N-methylacetamide ΔGtrans→cis
as 21.3 kcal/mol and ΔGcis→trans as 18.8 kcal/mol.96 Eyring
estimates at 293 K place the trans ↔ cis rates on the seconds to
minutes timescales, far beyond our ps-μs MD windows.
Accordingly, no interconversion is expected under our
conditions. Consistent with this, 1D potential energy scans
(PBE/6-31G* and OPLS/AA) of the peptide torsion ω give
ΔEtrans→cis/ΔEcis→trans: 21.3/18.3 and 20.6/16.4 kcal/mol,
respectively, which should be regarded as indicative rather
than rigorous free energy barriers. As a result, we ran two
separate MM simulations of the two conformers to obtain
equilibrated, solvated representative structural models of cis-
NMA and trans-NMA (see the blue part of the workflow
Figure 2). Classical force fields resolve cis/trans amide via
torsional and nonbonded terms and typically maintain amide
planarity; however, absolute barrier heights depend on the
method and the environment. In all cases, at room temper-
ature, the cis/trans interconversion of N-methylacetamide is far
slower than the ns sampling windows employed. Using Eyring
Transition State Theory with the calculated potential energy
barriers from the ω torsion scan, we estimate timescales of
∼6.3 min from trans to cis and ∼0.28 s from cis to trans at 293
K, so conformations initialized in cis or trans remain in that
state on these timescales. As expected, no interconversion
between cis and trans isomers is observed in the 70 ns MM
trajectories. Going beyond systems with high barriers, different
conformers can be identified with sufficiently long MM
simulations, and their populations estimated from the
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simulations. However, in our study, we assigned these two
conformations a priori and used the initial MM simulation to
analyze and identify subconformer dynamics and their
respective water interactions. The identified representative
structures were used to start all production runs for our
theoretical IR spectra calculation. The pattern of water
molecules forming hydrogen bonds with N-methylacetamide
is the primary criterion for selecting the representative
structure of each conformation (Figure 3A,C).
In the trans conformation, two water molecules are

hydrogen-bonded to the carbonyl functionality for the majority
of the simulation. However, transition states with one or three
bound water molecules are frequently observed. The amide has
the tendency to form only one hydrogen bond. One water
molecule is present in ∼60% of the simulation time, while the
remaining ∼40% corresponds to transition states without a
clearly defined hydrogen bond. The cis conformation shows
the same general trend, albeit with a slight shift to a lower
average number of hydrogen bonds, while the median remains
unchanged. The representative structures used as starting
points for the following evaluation of theoretical IR spectros-
copy approaches were chosen to reflect these hydrogen
bonding patterns and are shown in Figure 3A for trans and
Figure 3C for cis, respectively, while the frame-wise contact
analysis is shown in Figure 3B,D.
Efficient Workflows for Evaluating Traditional The-

oretical IR Spectroscopy Enable the Connection
between Structural and Spectral Data. We calculated
and measured IR spectra of N-methylacetamide to evaluate the
different strategies that connect IR spectroscopic data with
structural models addressing the forward problem (Figure 1A).
The experimentally measured spectrum serves as a gold
standard to evaluate the calculation strategies. An overview of
the IR spectra calculation workflow is illustrated in Figure 2.
Calculation parameters and experimental conditions are
detailed in the Methods section. The initially determined
representative structures of the conformational energy land-
scape minima are used to investigate the detailed atomic
motion within a given N-methylacetamide conformation. We
performed MD simulations using three different levels of
theory: classical molecular mechanics (MM) force field-based,
machine-learned potential-based molecular dynamics (ML),
and hybrid quantum mechanics/molecular mechanics (QM/
MM) simulations. To calculate the IR spectra based on the
structural data, we used the two state-of-the-art approaches:
normal-mode analysis (NMA) and dipole moment autocorre-
lation (DMA).
The resulting spectral comparison is presented in Figure 4.

For spectral analysis, two key spectral regions were considered:
(i) the amide I and II bands (1500−1700 cm−1), reflecting the
C−O stretching and a combination of C−N stretching and N−
H bending vibrations, respectively, and (ii) the fingerprint
region (1250−1450 cm−1) which includes methyl-bending and
amide III modes. The peak positions in these regions are listed
in Table 1, while Table 2 summarizes the deviations between
calculated and experimental peak positions. Since assigning
atom groups to each peak using DMA is highly challenging and
controversial, we focus instead on the peak pattern defined by
the spectral band positions and intensities. Mode assignments
are based on the established vibrational signatures of the
relevant functional groups, as also shown by Chen et al.93

All Combinations of Theoretical Methods Clearly
Distinguish between the trans and cis Conformations,

with All trans-NMA Spectra Showing Markedly Better
Agreement with the Experimental Data Than Their cis
Counterparts. All cis-NMA spectra calculated by NMA
consistently exhibit two bands in the amide region that are
separated from each other. While the dominant calculated peak
is in the region of the amide I, the second peak is red-shifted to
the region around 1485 cm−1. This strongly red-shifted second
peak is not present in the experiment and represents the key
marker band to distinguish between trans- and cis-NMA. This
clear peak separation is also observed in the calculated spectra
from DMA based on the MM and QM/MM data. In contrast,
the ML-based DMA spectra for both cis- and trans-NMA show
only one dominant peak with a broad shoulder. However, the
wavenumber of this maximum peak strongly differs between
the conformations allowing us to distinguish them. The cis-
NMA peak is red-shifted by ∼54 cm−1 compared to the one of
trans-NMA using ANI-2x and ∼57 cm−1 using MACE-OFF
(Table 1).
By thermodynamic preference, N-methylacetamide exists

predominantly in the trans conformation (98.5%), as trans-

Figure 4. Comparison of theoretical and experimental IR spectra. (A)
shows the simulation system for solvated trans-NMA and (E) the one
for cis-NMA. The left column shows the theoretical IR spectra
calculated based on NMA (orange) and dipole moment autocorre-
lation (green) for trans-NMA (B−D) and the right one for cis-NMA
(F−H) compared to the experimental spectrum (black dashed line).
Compared are three different methods to obtain the input geometries
for the spectra calculation, namely MM (B,F), machine-learned MD
(ANI-2x results shown) (C,G), and QM/MM using MiMiC (D,H).
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NMA is 2.5 kcal/mol more stable than cis-NMA.97,98 Under
these thermodynamic considerations, we find that all the
calculated spectra for the trans conformation agree better with
the experiment than the calculated spectra for the cis
conformation. In systems with more equally distributed
conformations under experimental conditions, population-
weighted IR spectra need to be calculated using MM
simulations or other methods to sample the conformational

space. Such weighting has been successfully applied to flexible
molecules in solution, demonstrating the importance of
thermodynamic sampling in spectral predictions.99 In the
case of N-methylacetamide, however, the overriding domi-
nance of trans-NMA (98.5%) makes the need for population-
weighting negligible. We consider only the results for trans-
NMA for our evaluation in the following.
All trans-NMA Spectra Calculated by Normal Mode

Analysis Represent the Experimental Features Well,
with the Best Agreement for the QM/MM-Based
Method. All simulation approaches using NMA as the
subsequent spectra calculation method successfully reproduced
the main spectral characteristics of trans-NMA observed
experimentally. These include a prominent amide I band, a
detectable amide II band, and characteristic bands in the
fingerprint region. However, there are some detailed deviations
from the experimental spectrum:
First, for all methods, deviations are observed in the relative

band intensities. Specifically, the calculated amide I/II ratio is
not in agreement with the experimental data, due to an
underestimation of the amide II absorbance. Moreover, the
calculated peak around 1450 cm−1 is always the most
prominent one in the fingerprint region, while it is the weakest
in the experimental data. The remaining fingerprint bands are
broadened and less intense than experimentally observed.
Second, a detailed analysis of the amide region reveals that

for both the MM and the QM/MM-based spectra, the amide I
and II peaks are in very good agreement with the experiment.
In contrast, the ML-based spectrum does not reflect the
experimental pattern as the amide II peak is red-shifted with
low absorbance. The spectra of the two ML interatomic
potentials ANI-2x and MACE-OFF display an identical general
shape and share all major spectral characteristics, with only
slight deviations regarding the peak positions. Figure 4 displays
the results using ANI-2x. A comparison between the two ML-
based potentials is found in Figures S1 and S2.
Third, the number of calculated peaks and their positions

within the fingerprint region agree with the experiment for all
methods. However, the overall pattern is not reproduced in
detail by any of the methods, as the absorbance and band
broadening of each of the four peaks deviates from the
experiment.
In summary, the MM- and QM/MM-based NMA-calculated

peak positions agree with the experimental data, but further
refinement of the method is needed to improve the amide I
and amide II absorbance ratios and the shape of the fingerprint
region. The QM/MM-based result is slightly better than the
MM-based one, which in turn is in better agreement than the
ML-based result. The very similar results of MM- and QM/
MM-based spectra indicate that the OPLS/AA MM force field
samples a conformational ensembleclose to the QM/MM one,
and QM/MM optimization of snapshots is already sufficient to
capture the key spectral features. This holds true for at least
simple structures with limited intra-conformational dynamics.
Examining the Dipole Moment Autocorrelation-

Based Calculations, the QM/MM-Derived Spectrum
Matches the trans-NMA Experimental Features Best.
The DMA approach depends even more strongly on the
accuracy of the underlying MD simulation approach than the
NMA. For DMA, every written structure (all 700 000 frames at
0.1 fs) of the simulation accounts for the calculation, while for
NMA, only 15 QM-optimized structures are used. Therefore,

Table 1. Comparison of the Calculated and Experimental
Peak Positions

Method Band Assignment/cm−1

Conf. Force Field Calculation Amide I
Amide
II Fingerprint Region

Experiment 1617 1576 1439 1417 1379
1317

trans MM NMA 1631 1574 1448 1408 1367
1316

DMA 1688 1613 1418 1368 1360
ML ANI-2x NMA 1630 1537 1448 1402 1369

1313
DMA 1591 - 1064

ML
MACE-
OFF

NMA 1624 1532 1449 1410 1374
1321

DMA 1555 - 1060
QM/MM NMA 1614 1570 1449 1399 1376

1300
DMA 1641 1547 1412 1371 1289

1290
cis MM NMA 1640 1486 1429 1390 1345

DMA 1718 1538 1357 1351
ML ANI-2x NMA 1647 1490 1458 1339 1391

1340
DMA 1537 - 1133 1074 1052

ML
MACE-
OFF

NMA 1649 1493 1453 1428 1389
1349

DMA 1498 - 1076 1036
QM/MM NMA 1625 1493 1464 1444 1409

1397 1354
DMA 1643 1488 1394 1350

Table 2. Deviation of the Assigned Calculated Peak
Positions to the Experimental Ones

Method
Deviation from
Experiment/cm−1 Absorbance Ratio

Conf. Force Field Calculation Amide I
Amide
II Amide I/Amide II

Experiment 0 0 1.40
trans MM NMA +14 −2 2.52

DMA +71 +37 0.89
ML ANI-2x NMA +13 −39 5.92

DMA −26 - -
ML MACE-
OFF

NMA +7 −44 7.14
DMA −62 - -

QM/MM NMA −3 −6 3.63
DMA +24 −29 1.79

cis MM NMA +23 −90 4.36
DMA +101 −38 5.16

ML ANI-2x NMA +30 −86 6.40
DMA −80 - -

ML MACE-
OFF

NMA +32 −83 6.05
DMA −119 - -

QM/MM NMA +8 −83 3.83
DMA +26 −88 4.36
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the deviation between the three MD methods is stronger than
for the NMA-calculated spectra.
Among all DMA-calculated spectra, the experimental overall

pattern in the amide region is best described by the ML-based
ANI-2x potential spectrum. The high-absorbance peak is red-
shifted by 26 cm−1 compared to the experiment. However, for
the ML-based MACE-OFF potential (Figure S1) the high-
absorbance peak is red-shifted by 62 cm−1 (Table 2) and
broadened relative to the experiment. In contrast, the MM-
and QM/MM-based spectra show two distinct, well-separated
peaks, not in accordance with the experimental shape. The
position of the tentative amide I peak deviates with 26 cm−1 in
a comparable magnitude to the ANI-2x spectrum, but is blue-
shifted in contrast to it. The MM Peak deviates most clearly
from the experiment with a blue-shift of 71 cm−1. Interestingly,
the MM- and QM/MM-based spectra both almost exactly
reproduce the amide I and amide II absorbance ratios (Table
2).
The fingerprint region reveals the most pronounced

differences between the different approaches. In both ML-
based spectra, this region is red-shifted by approximately 300
cm−1 and lacks a well-defined peak pattern (Figure S2). The
MM-based spectrum reproduces three of the four experimental
peaks (Table 1). The QM/MM-based spectrum shows four
peaks in close proximity to the four experimental ones and
overall exhibits the best agreement with the experiment,
although deviations remain.
Among All Methods, the QM/MM-Based NMA

Spectrum Shows the Best Agreement with the Experi-
ment, Although Further Refinement Should Be Con-
sidered. The results demonstrate that the choice of simulation
method and IR calculation technique strongly influences the
agreement with experimental IR spectra and even the ability to
distinguish conformers. QM accuracy is needed to reproduce
experimental data, as indicated by the best experimental fit of
the QM/MM-based spectra among all DMA calculations.
However, MM simulations with subsequent QM/MM
optimization provides the most economic way to obtain a
solid agreement with the experiment compared to the needed
computational power. The shifted fingerprint region for the
ANI-2x and MACE ML interatomic potential indicates a clear
issue with the way the methyl parameters are learned,
suggesting that improvements are needed. Nevertheless, we
anticipate that ML-based force fields are the future and will
advance theoretical IR spectroscopy methods. However, to
date, there is still a clear need to improve such force fields to
reach QM accuracy with less computational costs.
Among all methods, the best agreement between calculated

and experimental spectra is observed for QM/MM-based
NMA calculations. Nevertheless, further refinement remains
possible, especially for the peak pattern of the fingerprint
region. This region is, in fact, best reproduced by the QM/
MM-based DMA calculations. A systematic benchmarking of
the specific methodological options and implementations
across the different software packages may further improve
the agreement between the calculated spectra and the
experimental data. All in all, the differences in peak positions
and shapes across methods reflect the sensitivity of the
calculated spectra to the quality of detailed atomic changes.
This sensitivity underlines the high potential of IR spectros-
copy to advance as a crucial structure-giving method by
combining theoretical and experimental IR spectroscopy.

Reliable Methods for Computational Predicting IR
Spectra Pave the Way to Solve the Inverse Problem of
Assigning Structures to Spectra Directly. The power of
traditional theoretical IR spectroscopy approaches is evident,
nevertheless, the applicability of these traditional approaches
becomes increasingly constrained as molecular systems grow in
size and complexity. In particular, systems involving the explicit
consideration of surroundings, such as proteins or condensed-
phase environments, pose significant challenges. The computa-
tional expense of quantum mechanical calculations scales
poorly with system size, and the harmonic approximation
inherent in NMA often fails to capture anharmonic effects and
environmental influences that are critical in such contexts.
Although MD-based approaches incorporate some of these
effects, they remain time-consuming, computationally inten-
sive, and require extensive sampling, particularly for large or
flexible systems, where achieving sufficient sampling to capture
all relevant conformations becomes increasingly challenging.
Moreover, the outcomes of MD simulations can strongly
depend on the chosen starting structure or the employed
parameters, which may limit the exploration of the conforma-
tional space.
The ideal instead is, from just an experimental spectrum as

input, to determine conformers and vibrational modes that
give rise to different parts of the spectrum without
biomolecular simulations or other computationally intensive
modeling approaches. This is also known as the inverse
problem.47

While, to date, we cannot reliably solve for this inverse
problem, recent advances in machine learning (ML),
particularly in deep learning, offer opportunities to streamline
the workflow and possibly increase the accuracy of the
mapping between conformers and their vibrations, capturing a
specific spectrum of interest. For example, ML-derived force
fields accelerate dynamical modeling, substituting the role of
QM/MM or DFT approaches100 are a promising alternative,
but still leave room for improvement, as demonstrated by the
poor capturing of the methyl vibrations in the fingerprint
region of trans-NMA. Additionally, ML algorithms automate
spectra preprocessing tasks such as denoising, spike removal,
baseline correction, and feature extraction.101−103 ML also aids
in hybrid workflows by assisting in ranking candidate structures
prior to further refinement.104,105

Progress in the inverse problem itself is ongoing.47 Current
approaches simplify the problem by predicting molecular
graphs or SMILES sequences instead of full 3D structures or
focusing on easier tasks such as classifying functional groups.
Convolutional neural networks have been employed for
functional group prediction using FTIR data,48 and models
combining IR data with molecular formulas have been used to
generate SMILES strings.49 Integrating diverse spectral data,
particularly NMR, generally outperforms methods relying
solely on IR for structure elucidation, although 3D molecular
structure prediction still remains a challenge.50,106−108

Emerging deep generative models, such as diffusion and
flow-matching techniques, show promise in tackling these
complex, 3D structural inverse problems.109 Flow matching has
already been applied to 3D structure elucidation from Raman
rotational spectra.110

A major challenge is in obtaining suitable datasets for
training the models. Common benchmarks such as QM9,
which include small molecules up to nine heavy atoms, are
often supplemented with simulated spectra which fail to

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.5c04866
J. Phys. Chem. B 2025, 129, 11652−11665

11660

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.5c04866/suppl_file/jp5c04866_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.5c04866/suppl_file/jp5c04866_si_001.pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c04866?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


capture the full complexity of real data.47,103,111 Another
challenge is how to incorporate implicit chemical principles�
such as valency rules, ring strain or stereochemical
preferences�directly into the learning process. Without
these, models can struggle to generalize and scale to larger
molecules.47 Moreover, while many methods achieve promis-
ing top-k accuracy (how often the correct structure is found in
the k most probable predictions), achieving high top-1
accuracy is still difficult.50 Although recent literature has
explored providing confidence estimates to predictions,50

explaining why a prediction was made remains an open
challenge.
Looking ahead, machine learning (ML) is poised to

transform the theoretical analysis of infrared spectra by
enabling capabilities that extend beyond the traditional
computational methods. As larger and more diverse datasets
of experimental and computed spectra become available, ML
models will increasingly be able to capture the intricate
relationships between molecular structure and vibrational
features.
Such capabilities would significantly enhance our ability to

interpret spectral data, particularly in cases where traditional
approaches struggle, such as in complex mixtures, flexible
biomolecules, or materials under dynamic conditions.
Ultimately, this may enable automated structure elucidation
and spectral interpretation, with potential applications ranging
from high-throughput screening to in situ monitoring of
chemical processes.
While quantum mechanical methods will continue to

provide the theoretical foundation and interpretative depth
essential to vibrational spectroscopy, ML-based techniques are
expected to play an increasingly central role. With ongoing
advances in model architectures, training strategies, and
integration with experimental workflows, the coming years
are likely to witness a profound shift toward hybrid approaches
that combine the strengths of physics-based and data-driven
methods for theoretical IR spectroscopy.

■ CONCLUSION
In summary, we demonstrate that current theoretical computa-
tional biophysics approaches, particularly MD simulations in
combination with QM/MM optimization and normal-mode
analysis, accurately reproduce key features of experimental IR
spectra and distinguish molecular conformations such as cis-
and trans-NMA. This proves that the combination of
experimental and computational IR spectroscopy is capable
of mining the structural information encoded in the measured
data. The sensitivity of vibrational spectroscopy allows for
obtaining structural models with sub-Ångström resolution,
limited by the accuracy of the calculation method. However,
the required iterative feedback loop between computational
structure prediction and experimental validation is time-
consuming and computationally costly. It becomes particularly
challenging when the method is applied to molecules with
multiple conformations or larger proteins. However, solving
this challenge is desirable as it will be essential for, e.g.,
resolving heterogeneous aggregates, such as those implicated in
neurodegenerative diseases, which are currently unresolvable
by existing structural biology methods. Identifying the
structure of such drug targets will assist to improve targeted
therapy and diagnostics in future.
Building on recent advances in artificial intelligence tools,

the logical next step is to move beyond these forward models

and develop methods that directly infer structural information
from experimental IR spectra, the so-called inverse problem.
We anticipate that machine learning, which has already proven
useful in many related fields, will play a crucial role in this
endeavor. Its application to this specific problem is still in its
infancy with foundational work needed to establish reliable
models, generate diverse training data, and incorporate
chemical knowledge. Solving the inverse problem will pave
the way for advancing IR spectroscopy as a structure-giving
method, providing structural and dynamic models with sub-Å
resolution even of heterogeneous structures.
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Gerwert, K.; Lübben, M.; Rudack, T.; Kötting, C. A second
photoactivatable state of the anion-conducting channelrhodopsin
GtACR1 empowers persistent activity. Commun. Biol 2025, 8, 1183.
(12) Freier, E.; Wolf, S.; Gerwert, K. Proton transfer via a transient
linear water-molecule chain in a membrane protein. Proc. Natl. Acad.
Sci. U. S. A 2011, 108, 11435−11439.
(13) Hunt, N. T. Using 2D-IR Spectroscopy to Measure the
Structure, Dynamics, and Intermolecular Interactions of Proteins in
H2O. Acc. Chem. Res 2024, 57, 685−692.
(14) Pearlman, D. A.; Kollman, P. A. Are time-averaged restraints
necessary for nuclear magnetic resonance refinement? A model study
for DNA. J. Mol. Biol 1991, 220, 457−479.
(15) Miller, J. L.; Kollman, P. A. Theoretical studies of an
exceptionally stable RNA tetraloop: Observation of convergence
from an incorrect NMR structure to the correct one using
unrestrained molecular dynamics. J. Mol. Biol 1997, 270, 436−450.
(16) Giannini, D. D.; Kollman, P. A.; Bhacca, N. S.; Wolff, M. E.
Steric and electronic effects on carbon-13 nuclear magnetic
resonance.alpha.,.beta., and.gamma. shifts and fluorine-19-carbon-13
coupling constants in 9.alpha.-substituted cortisol derivatives. J. Am.
Chem. Soc 1974, 96, 5462−5466.
(17) Domelsmith, L. N.; Eaton, T. A.; Houk, K. N.; Anderson, G. M.
I.; Glennon, R. A.; Shulgin, A. T.; Castagnoli, N. J.; Kollman, P. A.
Photoelectron spectra of psychotropic drugs. 6. Relationships between
physical properties and pharmacological actions of amphetamine
analogs. J. Med. Chem 1981, 24, 1414−1421.
(18) Cieplak, P.; Howard, A. E.; Powers, J. P.; Rychnovsky, S. D.;
Kollman, P. A. Elucidating the Origin of Conformational Energy
Differences in Substituted 1,3-Dioxanes: A Combined Theoretical
and Experimental Study. J. Org. Chem 1996, 61, 3662−3668.
(19) Kollman, P. A.; Weiner, S.; Seibel, G.; Lybrand, T.; Singh, U.
C.; Calswell, J.; Rao, S. N. Modeling Complex Molecular Interactions
Involving Proteins and DNA a. Ann. N. Y. Acad. Sci 1986, 482, 234−
244.
(20) Ross, W. S.; Hardin, C. C.; Tinoco, J. I.; Rao, S. N.; Pearlman,
D. A.; Kollman, P. A. Effects of nucleotide bromination on the
stabilities of Z-RNA and Z-DNA: A molecular mechanics/
thermodynamic perturbation study. Biopolymers 1989, 28, 1939−
1957.
(21) Lifson, S.; Warshel, A. Consistent Force Field for Calculations
of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane
and N-Alkane Molecules. J. Chem. Phys 1968, 49, 5116.
(22) Grobjean, M. F.; Tavan, P.; Schulten, K. Can Normal Mode
Analysis Reveal the Geometry of the L5o Chromophore of
Bacteriorhodopsin? Eur. Biophys. J 1989, 16, 341−349.
(23) Gerwert, K.; Siebert, F. Evidence for Light-Induced 13-Cis, 14-
S-Cis, Isomerization in Bacteriorhodopsin Obtained by FTIR
Difference Spectroscopy Using Isotopically Labelled Retinals.
EMBO J 1986, 5, 805−811.
(24) Nonella, M.; Mathias, G.; Tavan, P. Infrared Spectrum of P-
Benzoquinone in Water Obtained from a QM/MM Hybrid Molecular
Dynamics Simulation. J. Phys. Chem. A 2003, 107, 8638−8647.
(25) Mann, D.; Teuber, C.; Tennigkeit, S. A.; Schröter, G.; Gerwert,
K.; Kötting, C. Mechanism of the Intrinsic Arginine Finger in
Heterotrimeric G Proteins. Proc. Natl. Acad. Sci. U. S. A 2016, 113,
No. E8041−E8050.
(26) Rudack, T.; Xia, F.; Schlitter, J.; Kötting, C.; Gerwert, K. The
Role of Magnesium for Geometry and Charge in GTP Hydrolysis,
Revealed by Quantum Mechanics/Molecular Mechanics Simulations.
Biophys. J 2012, 103, 293−302.
(27) Te Heesen, H.; Gerwert, K.; Schlitter, J. Role of the Arginine
Finger in Ras·RasGAP Revealed by QM/MM Calculations. FEBS Lett
2007, 581, 5677−5684.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.5c04866
J. Phys. Chem. B 2025, 129, 11652−11665

11662

https://orcid.org/0000-0001-5513-8056
https://orcid.org/0000-0001-5513-8056
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Klaus+Gerwert"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c04866?ref=pdf
https://www.gauss-centre.eu
https://doi.org/10.1023/A:1024733922459
https://doi.org/10.1023/A:1024733922459
https://doi.org/10.1038/s41592-019-0530-8
https://doi.org/10.1038/s41592-019-0530-8
https://doi.org/10.1038/s41592-019-0530-8
https://doi.org/10.1002/bip.20853
https://doi.org/10.1002/bip.20853
https://doi.org/10.1002/bip.20853
https://doi.org/10.1002/bip.360250307
https://doi.org/10.1002/bip.360250307
https://doi.org/10.1021/jp973314q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp973314q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp973314q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.0712095105
https://doi.org/10.1073/pnas.0712095105
https://doi.org/10.1021/acs.analchem.5b04286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b04286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b04286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b04286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s44321-025-00229-z
https://doi.org/10.1038/s44321-025-00229-z
https://doi.org/10.1002/cphc.200400504
https://doi.org/10.1002/cphc.200400504
https://doi.org/10.1038/s42003-025-08560-4
https://doi.org/10.1038/s42003-025-08560-4
https://doi.org/10.1038/s42003-025-08560-4
https://doi.org/10.1073/pnas.1104735108
https://doi.org/10.1073/pnas.1104735108
https://doi.org/10.1021/acs.accounts.3c00682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.3c00682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.3c00682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0022-2836(91)90024-Z
https://doi.org/10.1016/0022-2836(91)90024-Z
https://doi.org/10.1016/0022-2836(91)90024-Z
https://doi.org/10.1006/jmbi.1997.1113
https://doi.org/10.1006/jmbi.1997.1113
https://doi.org/10.1006/jmbi.1997.1113
https://doi.org/10.1006/jmbi.1997.1113
https://doi.org/10.1021/ja00824a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00824a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00824a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm00144a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm00144a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm00144a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo951918p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo951918p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo951918p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/j.1749-6632.1986.tb20954.x
https://doi.org/10.1111/j.1749-6632.1986.tb20954.x
https://doi.org/10.1002/bip.360281111
https://doi.org/10.1002/bip.360281111
https://doi.org/10.1002/bip.360281111
https://doi.org/10.1063/1.1670007
https://doi.org/10.1063/1.1670007
https://doi.org/10.1063/1.1670007
https://doi.org/10.1007/BF00257882
https://doi.org/10.1007/BF00257882
https://doi.org/10.1007/BF00257882
https://doi.org/10.1002/j.1460-2075.1986.tb04285.x
https://doi.org/10.1002/j.1460-2075.1986.tb04285.x
https://doi.org/10.1002/j.1460-2075.1986.tb04285.x
https://doi.org/10.1021/jp027747r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp027747r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp027747r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1612394113
https://doi.org/10.1073/pnas.1612394113
https://doi.org/10.1016/j.bpj.2012.06.015
https://doi.org/10.1016/j.bpj.2012.06.015
https://doi.org/10.1016/j.bpj.2012.06.015
https://doi.org/10.1016/j.febslet.2007.11.026
https://doi.org/10.1016/j.febslet.2007.11.026
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c04866?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(28) Babitzki, G.; Denschlag, R.; Tavan, P. Polarization Effects
Stabilize Bacteriorhodopsin’s Chromophore Binding Pocket: A
Molecular Dynamics Study. J. Phys. Chem. B 2009, 113, 10483−
10495.
(29) Steinbrecher, T.; Elstner, M. QM and QM/MM simulations of
proteins. Methods Mol. Biol 2013, 924, 91−124.
(30) Thomas, M.; Brehm, M.; Fligg, R.; Vöhringer, P.; Kirchner, B.
Computing Vibrational Spectra from Ab Initio Molecular Dynamics.
Phys. Chem. Chem. Phys 2013, 15, 6608−6622.
(31) Massarczyk, M.; Rudack, T.; Schlitter, J.; Kuhne, J.; Kötting, C.;
Gerwert, K. Local Mode Analysis: Decoding IR Spectra by Visualizing
Molecular Details. J. Phys. Chem. B 2017, 121, 3483−3492.
(32) Martinez, M.; Gaigeot, M.-P.; Borgis, D.; Vuilleumier, R.
Extracting effective normal modes from equilibrium dynamics at finite
temperature. J. Chem. Phys 2006, 125, 144106.
(33) Gaigeot, M. P.; Vuilleumier, R.; Sprik, M.; Borgis, D. Infrared
Spectroscopy of N-Methylacetamide Revisited by Ab Initio Molecular
Dynamics Simulations. J. Chem. Theory Comput 2005, 1, 772−789.
(34) Mathias, G.; Baer, M. D. Generalized Normal Coordinates for
the Vibrational Analysis of Molecular Dynamics Simulations. J. Chem.
Theory Comput 2011, 7, 2028−2039.
(35) Baiz, C. R.; et al. Vibrational Spectroscopic Map, Vibrational
Spectroscopy, and Intermolecular Interaction. Chem. Rev 2020, 120,
7152−7218.
(36) Lin, Y. S.; Shorb, J. M.; Mukherjee, P.; Zanni, M. T.; Skinner, J.
L. Empirical amide I vibrational frequency map: Application to 2D-IR
line shapes for isotope-edited membrane peptide bundles. J. Phys.
Chem. B 2009, 113, 592−60.
(37) Reppert, M. T. A.; Tokmakoff, A. Communication:
Quantitative multi-site frequency maps for amide I vibrational
spectroscopy. J. Chem. Phys 2015, 143, 06110.
(38) Małolepsza, E.; Straub, J. E. Empirical Maps For The
Calculation of Amide I Vibrational Spectra of Proteins From Classical
Molecular Dynamics Simulations. J. Phys. Chem. B 2014, 118, 7848−
7855.
(39) van Adrichem, K. E.; Jansen, T. L. C. AIM: A Mapping
Program for Infrared Spectroscopy of Proteins. J. Chem. Theory
Comput 2022, 18, 3089−3098.
(40) Brauner, J. W.; Flach, C. R.; Mendelsohn, R. A Quantitative
Reconstruction of the Amide I Contour in the IR Spectra of Globular
Proteins: From Structure to Spectrum. J. Am. Chem. Soc 2005, 127,
100−109.
(41) Baronio, C. M.; Barth, A. The Amide I Spectrum of Proteins−
Optimization of Transition Dipole Coupling Parameters Using
Density Functional Theory Calculations. J. Phys. Chem. B 2020,
124, 1703−1714.
(42) Zhou, Y.; Xiao, X.; Dong, L.; Tang, C.; Xiao, G.; Xu, L.
Cooperative Integration of Spatially Resolved Multi-Omics Data with
COSMOS. Nat. Commun 2025, 16, 27.
(43) Gastegger, M.; Behler, J.; Marquetand, P. Machine learning
molecular dynamics for the simulation of infrared spectra. Chem. Sci
2017, 8, 6924−6935.
(44) Ye, S.; Zhong, K.; Zhang, J.; Hu, W.; Hirst, J. D.; Zhang, G.;
Mukamel, S.; Jiang, J. A Machine Learning Protocol for Predicting
Protein Infrared Spectra. J. Am. Chem. Soc 2020, 142, 19071−19077.
(45) Saquer, N.; Iqbal, R.; Ellis, J. D.; Yoshimatsu, K. Infrared
spectra prediction using attention-based graph neural networks.
Digital Discovery 2024, 3, 602−609.
(46) Stienstra, C. M. K.; Hebert, L.; Thomas, P.; Haack, A.; Guo, J.;
Hopkins, W. S. Graphormer-IR: Graph Transformers Predict
Experimental IR Spectra Using Highly Specialized Attention. J.
Chem. Inf. Model 2024, 64, 4613−4629.
(47) Guo, K.; Shen, Y.; Gonzalez-Montiel, G. A.; Huang, Y.; Zhou,
Y.; Surve, M.; Guo, Z.; Das, P.; Chawla, N. V.; Wiest, O.; et al..
Artificial Intelligence in Spectroscopy: Advancing Chemistry from
Prediction to Generation and Beyond. arXiv, 2025.
(48) Enders, A. A.; North, N. M.; Fensore, C. M.; Velez-Alvarez, J.;
Allen, H. C. Functional Group Identification for FTIR Spectra Using

Image-Based Machine Learning Models. Anal. Chem 2021, 93, 9711−
9718.
(49) Alberts, M.; Laino, T.; Vaucher, A. C. Leveraging infrared
spectroscopy for automated structure elucidation. Commun. Chem
2024, 7 (1), 268.
(50) Mirza, A.; Jablonka, K. M. Elucidating Structures from Spectra
Using Multimodal Embeddings and Discrete Optimization. ChemRxiv
2024.
(51) Sepulveda-Montaño, L. X.; Galindo, J. F.; Kuroda, D. G. A new
computational methodology for the characterization of complex
molecular environments using IR spectroscopy: Bridging the gap
between experiments and computations. Chem. Sci 2024, 15, 14440−
14448.
(52) Herrebout, W. A.; Clou, K.; Desseyn, H. O. Vibrational
Spectroscopy of N-Methylacetamide Revisited. J. Phys. Chem. A 2001,
105, 4865−4881.
(53) Kwac, K.; Cho, M. Molecular dynamics simulation study of N-
methylacetamide in water. I. Amide I mode frequency fluctuation. J.
Chem. Phys 2003, 119, 2247−2255.
(54) Wang, L.; Middleton, C. T.; Zanni, M. T.; Skinner, J. L.
Development and Validation of Transferable Amide I Vibrational
Frequency Maps for Peptides. J. Phys. Chem. B 2011, 115, 3713−
3724.
(55) Krestyaninov, M. A.; Ivlev, D. V.; Dyshin, A. A.; Makarov, D.
M.; Kiselev, M. G.; Kolker, A. M. Complex Investigation of H-Bond in
Water-N-methylacetamide System: Volumetric Properties, DFT, IR,
MD Analysis. J. Mol. Liq 2022, 360, 119533.
(56) Sepulveda-Montaño, L. X.; Galindo, J. F.; Kuroda, D. G.
Infrared Spectroscopy of Liquid Solutions as a Benchmarking Tool of
Semiempirical QM Methods: The Case of GFN2-xTB. J. Phys. Chem.
B 2023, 127, 7955−7963.
(57) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development
and Testing of the OPLS All-Atom Force Field on Conformational
Energetics and Properties of Organic Liquids. J. Am. Chem. Soc 1996,
118, 11225−11236.
(58) Devereux, C.; Smith, J. S.; Huddleston, K. K.; Barros, K.;
Zubatyuk, R.; Isayev, O.; Roitberg, A. E. Extending the Applicability
of the ANI Deep Learning Molecular Potential to Sulfur and
Halogens. J. Chem. Theory Comput 2020, 16, 4192−4202.
(59) Olsen, J. M. H.; Bolnykh, V.; Meloni, S.; Ippoliti, E.; Bircher,
M. P.; Carloni, P.; Rothlisberger, U. MiMiC: A Novel Framework for
Multiscale Modeling in Computational Chemistry. J. Chem. Theory
Comput 2019, 15, 3810−3823.
(60) Bolnykh, V.; Olsen, J. M. H.; Meloni, S.; Bircher, M. P.;
Ippoliti, E.; Carloni, P.; Rothlisberger, U. Extreme Scalability of DFT-
Based QM/MM MD Simulations Using MiMiC. J. Chem. Theory
Comput 2019, 15, 5601−5613.
(61) Höweler, U. MAXIMOBY 11.1; CHEOPS: Altenberge,
Germany, 2007.
(62) Páll, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E.
Tackling Exascale Software Challenges in Molecular Dynamics
Simulations with GROMACS. Solving Software Challenges For
Exascale; Springer, 2015, 8759, 3−27.
(63) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.;
Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1−2, 19−25.
(64) Vedani, A.; Huhta, D. W. Algorithm for the systematic solvation
of proteins based on the directionality of hydrogen bonds. Am. Chem.
Soc 1991, 113, 5860−5862.
(65) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio,
C.; Alagona, G.; Profeta, S.; Weiner, P. A new force field for molecular
mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc
1984, 106, 765−784.
(66) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.; Klein, M. L. Comparison of simple potential functions for
simulating liquid water. J. Chem. Phys 1983, 79, 926−935.
(67) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling
through velocity rescaling. J. Chem. Phys 2007, 126, 014101.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.5c04866
J. Phys. Chem. B 2025, 129, 11652−11665

11663

https://doi.org/10.1021/jp902428x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp902428x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp902428x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-1-62703-017-5_5
https://doi.org/10.1007/978-1-62703-017-5_5
https://doi.org/10.1039/c3cp44302g
https://doi.org/10.1021/acs.jpcb.6b09343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.6b09343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.2346678
https://doi.org/10.1063/1.2346678
https://doi.org/10.1021/ct050029z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct050029z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct050029z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct2001304?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct2001304?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.9b00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.9b00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp807528q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp807528q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4928637
https://doi.org/10.1063/1.4928637
https://doi.org/10.1063/1.4928637
https://doi.org/10.1021/jp412827s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp412827s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp412827s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja0400685?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja0400685?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja0400685?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.9b11793?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.9b11793?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.9b11793?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-024-55204-y
https://doi.org/10.1038/s41467-024-55204-y
https://doi.org/10.1039/C7SC02267K
https://doi.org/10.1039/C7SC02267K
https://doi.org/10.1021/jacs.0c06530?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.0c06530?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D3DD00254C
https://doi.org/10.1039/D3DD00254C
https://doi.org/10.1021/acs.jcim.4c00378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.4c00378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.1c00867?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.1c00867?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s42004-024-01341-w
https://doi.org/10.1038/s42004-024-01341-w
https://doi.org/10.1039/D4SC03219E
https://doi.org/10.1039/D4SC03219E
https://doi.org/10.1039/D4SC03219E
https://doi.org/10.1039/D4SC03219E
https://doi.org/10.1021/jp004396c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp004396c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1580807
https://doi.org/10.1063/1.1580807
https://doi.org/10.1021/jp200745r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp200745r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.molliq.2022.119533
https://doi.org/10.1016/j.molliq.2022.119533
https://doi.org/10.1016/j.molliq.2022.119533
https://doi.org/10.1021/acs.jpcb.3c03174?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.3c03174?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9621760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9621760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9621760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-319-15976-8_1
https://doi.org/10.1007/978-3-319-15976-8_1
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1021/ja00015a049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00015a049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00315a051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00315a051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.2408420
https://doi.org/10.1063/1.2408420
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c04866?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(68) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an
external bath. J. Chem. Phys 1984, 81, 3684−3690.
(69) Nosé, S. A unified formulation of the constant temperature
molecular dynamics methods. J. Chem. Phys 1984, 81, 511−519.
(70) Hoover, W. G. Canonical dynamics: Equilibrium phase-space
distributions. Phys. Rev. A 1985, 31, 1695−1697.
(71) Parrinello, M.; Rahman, A. Polymorphic transitions in single
crystals: A new molecular dynamics method. J. Appl. Phys 1981, 52,
7182−7190.
(72) Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. LINCS: A
linear constraint solver for molecular simulations. J. Comput. Chem
1997, 18, 1463−1472.
(73) Scheurer, M.; Rodenkirch, P.; Siggel, M.; Bernardi, R. C.;
Schulten, K.; Tajkhorshid, E.; Rudack, T. PyContact: Rapid,
Customizable, and Visual Analysis of Noncovalent Interactions in
MD Simulations. Biophys. J 2018, 114, 577−583.
(74) Kovács, D. P.; et al. MACE-OFF: Short-Range Transferable
Machine Learning Force Fields for Organic Molecules. J. Am. Chem.
Soc 2025, 147, 17598−17611.
(75) Fink, T.; Reymond, J.-L. Virtual exploration of the chemical
universe up to 11 atoms of C, N, O, F: Assembly of 26.4 million
structures (110.9 million stereoisomers) and analysis for new ring
systems, stereochemistry, physico-chemical properties, compound
classes and drug discovery. J. Chem. Inf. Model 2007, 47, 342−353.
(76) Gaulton, A.; et al. ChEMBL: A large-scale bioactivity database
for drug discovery. Nucleic Acids Res 2014, 42, D1083−D1090.
(77) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: An extensible
neural network potential with DFT accuracy at force field computa-
tional cost. Chem. Sci 2017, 8, 3192−3203.
(78) Eastman, P.; Behara, P. K.; Dotson, D. L.; Galvelis, R.; Herr, J.
E.; Horton, J. T.; Mao, Y.; Chodera, J. D.; Pritchard, B. P.; Wang, Y.;
et al. SPICE, A Dataset of Drug-like Molecules and Peptides for
Training Machine Learning Potentials. Sci. Data 2023, 10, 11.
(79) Batatia, I.; Kovacs, D. P.; Simm, G. N. C.; Ortner, C.; Csanyi,
G. MACE: Higher Order Equivariant Message Passing Neural
Networks for Fast and Accurate Force Fields. arXiv 2022, 35,
11423−11436.
(80) Leimkuhler, B.; Matthews, C. Rational construction of
stochastic numerical methods for molecular sampling. Appl. Math.
Res. Express 2013, 2013, 34−56.
(81) Inakollu, V. S.; Yu, H. Comparative studies of IR spectra of
deprotonated serine with classical and thermostated ring polymer
molecular dynamics simulations. Struct. Dyn 2021, 8, 054101.
(82) Schwörer, M.; Wichmann, C.; Tavan, P. A polarizable QM/
MM approach to the molecular dynamics of amide groups solvated in
water. J. Chem. Phys 2016, 144, 114504.
(83) Raghavan, B.; Paulikat, M.; Ahmad, K.; Callea, L.; Rizzi, A.;
Ippoliti, E.; Mandelli, D.; Bonati, L.; De Vivo, M.; Carloni, P. Drug
Design in the Exascale Era: A Perspective from Massively Parallel
QM/MM Simulations. J. Chem. Inf. Model 2023, 63, 3647−3658.
(84) Hutter, J.; Alavi, A.; Deutsch, T.; Bernasconi, M.; Goedecker,
S.; Marx, D.; Tuckerman, M.; Parrinello, M. CPMD 4.3. https://
github.com/CPMD-code. (Accessed: 18 September 2025).
(85) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett 1996, 77, 3865−3868.
(86) Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-
wave calculations. Phys. Rev. B 1991, 43, 1993−2006.
(87) Berens, P. H.; Mackay, D. H.; White, G. M.; Wilson, K. R.
Thermodynamics and quantum corrections from molecular dynamics
for liquid water. J. Chem. Phys 1983, 79, 2375−2389.
(88) Gaigeot, M.-P.; Sprik, M. Ab Initio Molecular Dynamics
Computation of the Infrared Spectrum of Aqueous Uracil. J. Phys.
Chem. B 2003, 107, 10344−10358.
(89) Neese, F. Software update: The ORCA program system,
version 5.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci 2022, 12,
No. e1606.

(90) Mann, D.; Höweler, U.; Kötting, C.; Gerwert, K. Elucidation of
Single Hydrogen Bonds in GTPases via Experimental and Theoretical
Infrared Spectroscopy. Biophys. J 2017, 112, 66−77.
(91) Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Ross, W. S.;
Cheatham, T. E. I. AMBER 5; University of California: San Francisco,
1997.
(92) DeFlores, L. P.; Ganim, Z.; Ackley, S. F.; Chung, H. S.;
Tokmakoff, A. The Anharmonic Vibrational Potential and Relaxation
Pathways of the Amide I and II Modes of N-Methylacetamide. J. Phys.
Chem. B 2006, 110, 18973−18980.
(93) Chen, X. G.; Schweitzer-Stenner, R.; Asher, S. A.; Mirkin, N.
G.; Krimm, S. Vibrational Assignments of trans-N-Methylacetamide
and Some of Its Deuterated Isotopomers from Band Decomposition
of IR, Visible, and Resonance Raman Spectra. J. Phys. Chem 1995, 99,
3074−3083.
(94) Cunha, A. V.; Salamatova, E.; Bloem, E.; Roeters, S. J.;
Woutersen, S.; Pshenichnikov, M. S.; Jansen, T. L. C. Interplay
between Hydrogen Bonding and Vibrational Coupling in Liquid N-
Methylacetamide. J. Phys. Chem. Lett 2017, 8, 2438−2444.
(95) Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang,
J.; Cao, Y. DFT-Calculated IR Spectrum Amide I, II, and III Band
Contributions of N-Methylacetamide Fine Components. ACS Omega
2020, 5, 8572−8578.
(96) Drakenberg, T.; Forsén, S. The barrier to internal rotation in
monosubstituted amides. J. Chem. Soc. D 1971, 1404−1405.
(97) Radzicka, A.; Pedersen, L.; Wolfenden, R. Influences of solvent
water on protein folding: Free energies of solvation of cis and trans
peptides are nearly identical. Biochemistry 1988, 27, 4538−4541.
(98) Mirkin, N. G.; Krimm, S. Conformers Of Trans-N-
Methylacetamide Ab initio study of geometries and vibrational
spectra. J. Mol. Struct 1991, 242, 143−160.
(99) Dobsí̌ková, K.; Michal, P.; Spálovská, D.; Kuchar,̌ M.;
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analysis of amphetamine and methamphetamine: A comprehensive
approach by vibrational and chiroptical spectroscopy. The Analyst
2023, 148, 1337−1348.
(100) Schaaf, L. L.; Rhodes, B. J.; Zick, M. E.; Pugh, S. M.; Hilliard,
J. S.; Sharma, S.; Wade, C. R.; Milner, P. J.; Csányi, G.; Forse, A. C.
ML Force Fields for Computational NMR Spectra of Dynamic
Materials across Time-Scales. In Proceedings of the AI4Mat Workshop
at ICLR 2025; OpenReview, 2025.
(101) Han, M.; Dang, Y.; Han, J. Denoising and Baseline Correction
Methods for Raman Spectroscopy Based on Convolutional
Autoencoder: A Unified Solution. Sensors 2024, 24, 3161.
(102) Georgiev, D.; Pedersen, S. V.; Xie, R.; Fernández-Galiana;
Stevens, M. M.; Barahona, M. RamanSPy: An Open-Source Python
Package for Integrative Raman Spectroscopy Data Analysis. Anal.
Chem 2024, 96, 8492−8500.
(103) Alberts, M.; Schilter, O.; Zipoli, F.; Hartrampf, N.; Laino, T.
Unraveling Molecular Structure: A Multimodal Spectroscopic Dataset
for Chemistry. arXiv 2024.
(104) Chandan Kanakala, G.; Sridharan, B.; Priyakumar, U. D.
Spectra to structure: Contrastive learning framework for library
ranking and generating molecular structures for infrared spectra.
Digital Discovery 2024, 3, 2417−2423.
(105) Huang, Z.; Chen, M. S.; Woroch, C. P.; Markland, T. E.;
Kanan, M. W. A framework for automated structure elucidation from
routine NMR spectra. Chem. Sci 2021, 12, 15329−15338.
(106) Gil, R. R. Constitutional, Configurational, and Conformational
Analysis of Small Organic Molecules on the Basis of NMR Residual
Dipolar Couplings. Angew. Chem., Int. Ed 2011, 50, 7222−7224.
(107) Guo, K.; Nan, B.; Zhou, Y.; Guo, T.; Guo, Z.; Surve, M.;
Liang, Z.; Chawla, N. V.; Wiest, O.; Zhang, X. Can LLMs Solve
Molecule Puzzles? A Multimodal Benchmark for Molecular Structure
Elucidation. Advances in Neural Information Processing Systems;
NeurIPS Proceedings, 2024, 37, 134721−134746.
(108) Devata, S.; Sridharan, B.; Mehta, S.; Pathak, Y.; Laghuvarapu,
S.; Varma, G.; Priyakumar, U. D. DeepSPInN - deep reinforcement

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.5c04866
J. Phys. Chem. B 2025, 129, 11652−11665

11664

https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.328693
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
https://doi.org/10.1016/j.bpj.2017.12.003
https://doi.org/10.1016/j.bpj.2017.12.003
https://doi.org/10.1016/j.bpj.2017.12.003
https://doi.org/10.1021/jacs.4c07099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.4c07099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci600423u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci600423u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci600423u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci600423u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci600423u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1038/s41597-022-01882-6
https://doi.org/10.1038/s41597-022-01882-6
https://doi.org/10.1093/amrx/abs010
https://doi.org/10.1093/amrx/abs010
https://doi.org/10.1063/4.0000124
https://doi.org/10.1063/4.0000124
https://doi.org/10.1063/4.0000124
https://doi.org/10.1063/1.4943972
https://doi.org/10.1063/1.4943972
https://doi.org/10.1063/1.4943972
https://doi.org/10.1021/acs.jcim.3c00557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c00557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c00557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/CPMD-code
https://github.com/CPMD-code
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1063/1.446044
https://doi.org/10.1063/1.446044
https://doi.org/10.1021/jp034788u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp034788u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.1606
https://doi.org/10.1002/wcms.1606
https://doi.org/10.1016/j.bpj.2016.11.3195
https://doi.org/10.1016/j.bpj.2016.11.3195
https://doi.org/10.1016/j.bpj.2016.11.3195
https://doi.org/10.1021/jp0603334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0603334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100010a017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100010a017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100010a017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b00731?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b00731?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b00731?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.9b04421?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.9b04421?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C29710001404
https://doi.org/10.1039/C29710001404
https://doi.org/10.1021/bi00412a047?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi00412a047?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi00412a047?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0022-2860(91)87133-3
https://doi.org/10.1016/0022-2860(91)87133-3
https://doi.org/10.1016/0022-2860(91)87133-3
https://doi.org/10.1039/D2AN02014A
https://doi.org/10.1039/D2AN02014A
https://doi.org/10.1039/D2AN02014A
https://doi.org/10.3390/s24103161
https://doi.org/10.3390/s24103161
https://doi.org/10.3390/s24103161
https://doi.org/10.1021/acs.analchem.4c00383?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.4c00383?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D4DD00135D
https://doi.org/10.1039/D4DD00135D
https://doi.org/10.1039/D1SC04105C
https://doi.org/10.1039/D1SC04105C
https://doi.org/10.1002/anie.201101561
https://doi.org/10.1002/anie.201101561
https://doi.org/10.1002/anie.201101561
https://doi.org/10.1039/D4DD00008K
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c04866?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


learning for molecular structure prediction from infrared and 13C
NMR spectra. Digital Discovery 2024, 3, 818−829.
(109) Daras, G.; Chung, H.; Lai, C.-H.; Mitsufuji, Y.; Ye, J. C.;
Milanfar, P.; Dimakis, A. G.; Delbracio, M. A Survey on Diffusion
Models for Inverse Problems. arXiv 2024.
(110) Cheng, A.; Lo, A.; Lee, K. L. K.; Miret, S.; Aspuru-Guzik, A.
Stiefel Flow Matching for Moment-Constrained Structure Elucida-
tion. arXiv 2024.
(111) Priessner, M.; Lewis, R.; Janet, J. P.; Lemurell, I.; Johansson,
M.; Goodman, J.; Tomberg, A. Enhancing Molecular Structure
Elucidation: MultiModalTransformer for both simulated and
experimental spectra. ChemRxiv 2024.
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